1
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
2
|
He F, Madhan S, Kwang J. Baculovirus vector as a delivery vehicle for influenza vaccines. Expert Rev Vaccines 2009; 8:455-67. [PMID: 19348561 DOI: 10.1586/erv.09.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The baculovirus vector has emerged as an efficient delivery vehicle for influenza vaccines. In addition to the ease and safety in expeditious production, recent improvements in baculovirus engineering to display foreign proteins on the surface and to express transgenes with suitable promoters in various cell lines have become milestones in the development of the baculovirus expression system. Surface-displayed and shuttle promoter-mediated baculovirus vaccines for influenza present advantages in immunogenicity and safety, as studied in several animal models. A variety of strategies, including the modification of envelope proteins for surface display, the selection of novel promoters for in vivo transductions and advancements in downstream processing, aid the improvement of baculovirus-based influenza vaccines and represent progress toward next-generation vaccines for influenza.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 117604 Singapore.
| | | | | |
Collapse
|
3
|
Kaikkonen MU, Viholainen JI, Närvänen A, Ylä-Herttuala S, Airenne KJ. Targeting and purification of metabolically biotinylated baculovirus. Hum Gene Ther 2008; 19:589-600. [PMID: 18479188 DOI: 10.1089/hum.2007.177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targeting viral entry is one of the major goals in the development of vectors for gene therapy. Ideally, the coupling of each new targeting motif would not require changes in vector structure. To achieve this, we developed novel metabolically biotinylated baculoviral vectors by displaying a small biotin acceptor peptide (BAP) fused either to different sites in the baculovirus glycoprotein gp64 or to the transmembrane anchor of vesicular stomatitis virus G protein. Baculoviral particles were biotinylated during vector production by coexpression of Escherichia coli biotin ligase (BirA). The insertion of BAP at amino acid position 283 of gp64 resulted in the most efficient biotin display. Unlike vectors with lower biotin display, these vectors also showed improved transduction when retargeted to transferrin, epidermal growth factor, and CD46 receptors overexpressed on rat glioma and human ovarian carcinoma cells. Biotinylated baculoviral vectors could also be concentrated by one-step magnetic particle-based capture to reach titers up to 10(10) plaque-forming units/ml. These results demonstrate the utility of metabolically biotinylated baculovirus for vector targeting and viral purification applications.
Collapse
Affiliation(s)
- Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Laakkonen JP, Kaikkonen MU, Ronkainen PHA, Ihalainen TO, Niskanen EA, Häkkinen M, Salminen M, Kulomaa MS, Ylä-Herttuala S, Airenne KJ, Vihinen-Ranta M. Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell Microbiol 2007; 10:667-81. [PMID: 18042259 DOI: 10.1111/j.1462-5822.2007.01074.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), has the ability to transduce mammalian cell lines without replication. The general objective of this study was to detect the transcription and expression of viral immediate-early genes in human cells and to examine the interactions between viral components and subnuclear structures. Viral capsids were seen in large, discrete foci in nuclei of both dividing and non-dividing human cells. Concurrently, the transcription of viral immediate-early transregulator genes (ie-1, ie-2) and translation of IE-2 protein were detected. Quantitative microscopy imaging and analysis showed that virus transduction altered the size of promyelocytic leukaemia nuclear bodies, which are suggested to be involved in replication and transcription of various viruses. Furthermore, altered distribution of the chromatin marker Draq5 and histone core protein (H2B) in transduced cells indicated that the virus was able to induce remodelling of the host cell chromatin. To conclude, this study shows that the non-replicative insect virus, baculovirus and its proteins can induce multiple changes in the cellular machinery of human cells.
Collapse
Affiliation(s)
- Johanna P Laakkonen
- NanoScience Center, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Strauss R, Hüser A, Ni S, Tuve S, Kiviat N, Sow PS, Hofmann C, Lieber A. Baculovirus-based Vaccination Vectors Allow for Efficient Induction of Immune Responses Against Plasmodium falciparum Circumsporozoite Protein. Mol Ther 2007; 15:193-202. [PMID: 17164791 DOI: 10.1038/sj.mt.6300008] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Baculovirus vectors are able to transduce a large variety of mammalian cell types and express transgenes placed under the control of heterologous promoters. In this study, we evaluated the potential of baculovirus vectors for malaria vaccination. To induce efficient CD4(+) and CD8(+) T-cell responses, we produced a series of vectors that display the Plasmodium falciparum circumsporozoite (CS) protein in the virion envelope and/or allow for CS expression upon transduction of mammalian cells. We found that baculovirus vectors can transduce professional antigen-presenting cells and trigger their maturation, which is a prerequisite for efficient antigen presentation. Upon intramuscular injection into mice, the vector that both displayed and expressed CS induced higher anti-CS antibody titers (of the immunoglobulin (IgG)1 and IgG2a type) and a higher frequency of interferon-gamma-producing T cells specific to CS, than the vectors which either only displayed or only expressed CS. The baculovirus CS display/expression vector was also superior in inducing CS-specific CD4(+) and CD8(+) T-cell responses in vitro using human peripheral blood mononuclear cells from naive donors. This, together with the absence of pre-existing immunity to baculoviruses in humans, the absence of viral gene expression in mammalian cells, and the relative low immunogenicity of baculovirus virions, makes these vectors promising tools for vaccination. Furthermore, the ability to produce large amounts in serum-free medium at a low cost adds a further advantage to this vector system.
Collapse
Affiliation(s)
- Robert Strauss
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mäkelä AR, Oker-Blom C. Baculovirus display: a multifunctional technology for gene delivery and eukaryotic library development. Adv Virus Res 2006; 68:91-112. [PMID: 16997010 PMCID: PMC7112267 DOI: 10.1016/s0065-3527(06)68003-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For over a decade, phage display has proven to be of immense value, allowing selection of a large variety of genes with novel functions from diverse libraries. However, the folding and modification requirements of complex proteins place a severe constraint on the type of protein that can be successfully displayed using this strategy, a restriction that could be resolved by similarly engineering a eukaryotic virus for display purposes. The quite recently established eukaryotic molecular biology tool, the baculovirus display vector system (BDVS), allows combination of genotype with phenotype and thereby enables presentation of eukaryotic proteins on the viral envelope or capsid. Data have shown that the baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is a versatile tool for eukaryotic virus display. Insertion of heterologous peptides and/or proteins into the viral surface by utilizing the major envelope glycoprotein gp64, or foreign membrane-derived counterparts, allows incorporation of the sequence of interest onto the surface of infected cells and virus particles. A number of strategies are being investigated in order to further develop the display capabilities of AcMNPV and improve the complexity of a library that may be accommodated. Numerous expression vectors for various approaches of surface display have already been developed. Further improvement of both insertion and selection strategies toward development of a refined tool for use in the creation of useful eukaryotic libraries is, however, needed. Here, the status of baculovirus display with respect to alteration of virus tropism, antigen presentation, transgene expression in mammalian cells, and development of eukaryotic libraries will be reviewed.
Collapse
Affiliation(s)
- Anna R Mäkelä
- Department of Biological and Environmental Science, NanoScience Center University of Jyväskylä, FIN-40014, Finland
| | | |
Collapse
|
8
|
Matilainen H, Mäkelä AR, Riikonen R, Saloniemi T, Korhonen E, Hyypiä T, Heino J, Grabherr R, Oker-Blom C. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J Biotechnol 2006; 125:114-26. [PMID: 16569454 DOI: 10.1016/j.jbiotec.2006.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 01/17/2006] [Accepted: 02/06/2006] [Indexed: 11/23/2022]
Abstract
Baculovirus vectors have been shown to enter a variety of mammalian cell lines and gene transfer with wild-type baculovirus (WT) has been demonstrated both in vitro and in vivo. Different protein motifs have been displayed on the viral surface to serve as ligands for cell-specific receptor molecules. We have generated recombinant baculovirus vectors displaying an RGD-motif, recognized by alphaV integrin, on the viral surface. The RGD motifs within the C-terminus of coxsackie virus A9 and human parechovirus 1 VP1 proteins were fused to the N-terminus of the major envelope glycoprotein, gp64, of Autographa californica multiple nucleopolyhedrovirus. The recombinant RGD-presenting viruses bound more efficiently to the surface of human lung carcinoma cells (A549), known to contain alphaV integrins, as compared to WT baculovirus. In addition, the binding pattern of the RGD-displaying baculovirus showed extensive clustering. This most likely represents clustering of the integrin molecules on the cell surface, induced by binding of the RGD-displaying baculovirus. Finally, the transduction efficiency of an RGD-representing virus increased by almost three-fold as monitored by light emission measurements. In conclusion, these results suggest that the RGD-motif is functional on the surface of baculovirus and thereby these tropism-modified viruses bind more efficiently as well as enhance the transduction efficiency of human cancer cells expressing alphaV integrins.
Collapse
Affiliation(s)
- Heli Matilainen
- Department of Biological and Environmental Science, Division of Biotechnology, University of Jyväskylä, P.O. Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matilainen H, Rinne J, Gilbert L, Marjomäki V, Reunanen H, Oker-Blom C. Baculovirus entry into human hepatoma cells. J Virol 2005; 79:15452-9. [PMID: 16306616 PMCID: PMC1316037 DOI: 10.1128/jvi.79.24.15452-15459.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Accepted: 09/26/2005] [Indexed: 12/22/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), a prototype member of the Baculoviridae family, has gained increasing interest as a potential vector candidate for mammalian gene delivery applications. AcMNPV is known to enter both dividing and nondividing mammalian cell lines in vitro, but the mode and kinetics of entry as well as the intracellular transport of the virus in mammalian cells is poorly understood. The general objective of this study was to characterize the entry steps of AcMNPV- and green fluorescent protein-displaying recombinant baculoviruses in human hepatoma cells. The viruses were found to bind and transduce the cell line efficiently, and electron microscopy studies revealed that virions were located on the cell surface in pits with an electron-dense coating resembling clathrin. In addition, virus particles were found in larger noncoated plasma membrane invaginations and in intracellular vesicles resembling macropinosomes. In double-labeling experiments, virus particles were detected by confocal microscopy in early endosomes at 30 min and in late endosomes starting at 45 min posttransduction. Viruses were also seen in structures specific for early endosomal as well as late endosomal/lysosomal markers by nanogold preembedding immunoelectron microscopy. No indication of viral entry into recycling endosomes or the Golgi complex was observed by confocal microscopy. In conclusion, these results suggest that AcMNPV enters mammalian cells via clathrin-mediated endocytosis and possibly via macropinocytosis. Thus, the data presented here should enable future design of baculovirus vectors suitable for more specific and enhanced delivery of genetic material into mammalian cells.
Collapse
Affiliation(s)
- Heli Matilainen
- University of Jyväskylä, Nano Science Center, Department of Biological and Environmental Science, PO Box 35, FIN-40351 Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|