1
|
Jones CJM, Munro PRT. Stability of gel wax based optical scattering phantoms. BIOMEDICAL OPTICS EXPRESS 2018; 9:3495-3502. [PMID: 30338134 PMCID: PMC6191636 DOI: 10.1364/boe.9.003495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 05/27/2023]
Abstract
Phantoms with tuneable optical scattering properties are essential in the development and refinement of optical based imaging techniques. Mineral oil based 'gel wax' phantoms are the subject of increasing interest due to their ease and speed of manufacture, non-toxic nature, ability to cast into anatomically realistic shapes, as well as their cost-effective nature of production. The addition of scatterers such as titanium dioxide powder and monodisperse silica microspheres to the gel wax allows for the creation of phantoms with a controllable optical scattering coefficient. To enable repeated use of such phantoms, the stability of the scattering properties must be determined-a property which has yet to be investigated. We present an analysis of the stability of the reduced scattering coefficient (μ s ' ) of such phantoms over time. We conclude that due to the measurable reduction in scattering coefficient over time, gel wax phantoms embedded with silica spheres may not be suitable for repeated use over time, however gel wax-TiO2 phantoms are much more temporally stable.
Collapse
Affiliation(s)
- Charlotte J. Maughan Jones
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London WC1E 6BT, UK
| | - Peter R. T. Munro
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London WC1E 6BT, UK
- School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| |
Collapse
|
2
|
Maneas E, Xia W, Ogunlade O, Fonseca M, Nikitichev DI, David AL, West SJ, Ourselin S, Hebden JC, Vercauteren T, Desjardins AE. Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541509 PMCID: PMC5846519 DOI: 10.1364/boe.9.001151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue-mimicking phantoms are widely used for the calibration, evaluation and standardisation of medical imaging systems, and for clinical training. For photoacoustic imaging, tissue-mimicking materials (TMMs) that have tuneable optical and acoustic properties, high stability, and mechanical robustness are highly desired. In this study, gel wax is introduced as a TMM that satisfies these criteria for developing photoacoustic imaging phantoms. The reduced scattering and optical absorption coefficients were independently tuned with the addition of TiO2 and oil-based inks. The frequency-dependent acoustic attenuation obeyed a power law; for native gel wax, it varied from 0.71 dB/cm at 3 MHz to 9.93 dB/cm at 12 MHz. The chosen oil-based inks, which have different optical absorption spectra in the range of 400 to 900 nm, were found to have good photostability under pulsed illumination with photoacoustic excitation light. Optically heterogeneous phantoms that comprised of inclusions with different concentrations of carbon black and coloured inks were fabricated, and multispectral photoacoustic imaging was performed with an optical parametric oscillator and a planar Fabry-Pérot sensor. We conclude that gel wax is well suited as a TMM for multispectral photoacoustic imaging.
Collapse
Affiliation(s)
- Efthymios Maneas
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Wenfeng Xia
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Olumide Ogunlade
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Martina Fonseca
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Daniil I. Nikitichev
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Anna L. David
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX,
UK
- Department of Development and Regeneration, KU Leuven (Katholieke Universiteit),
Belgium
| | - Simeon J. West
- Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU,
UK
| | - Sebastien Ourselin
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Tom Vercauteren
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| | - Adrien E. Desjardins
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ,
UK
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT,
UK
| |
Collapse
|
3
|
Designing a wearable navigation system for image-guided cancer resection surgery. Ann Biomed Eng 2014; 42:2228-37. [PMID: 24980159 DOI: 10.1007/s10439-014-1062-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023]
Abstract
A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.
Collapse
|
6
|
El-Dahdah H, Wang B, He G, Xu RX. An automatic occlusion device for remote control of tumor tissue ischemia. Technol Cancer Res Treat 2010; 9:71-6. [PMID: 20082532 DOI: 10.1177/153303461000900108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We developed an automatic occlusion device for remote control of tumor tissue ischemia. The device consists of a flexible cannula encasing a shape memory alloy wire with its distal end connected to surgical suture. Regional tissue occlusion was tested on both the benchtop and the animal models. In the benchtop test, the occlusion device introduced quantitative and reproducible changes of blood flow in a tissue simulating phantom embedding a vessel simulator. In the animal test, the device generated a cyclic pattern of reversible ischemia in the right hinder leg tissue of a black male C57BL/6 mouse. We also developed a multimodal detector that integrates near infrared spectroscopy and electron paramagnetic resonance spectroscopy for continuous monitoring of tumor tissue oxygenation, blood content, and oxygen tension changes. The multimodal detector was tested on a cancer xenograft nude mouse undergoing reversible tumor ischemia. The automatic occlusion device and the multimodal detector can be potentially integrated for closed-loop feedback control of tumor tissue ischemia. Such an integrated occlusion device may be used in multiple clinical applications such as regional hypoperfusion control in tumor resection surgeries and thermal ablation processes. In addition, the proposed occlusion device can also be used as a research tool to understand tumor oxygen transport and hemodynamic characteristics.
Collapse
Affiliation(s)
- Hamid El-Dahdah
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
7
|
Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 2009; 31:1716-22. [PMID: 20006382 DOI: 10.1016/j.biomaterials.2009.11.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/17/2009] [Indexed: 11/22/2022]
Abstract
Accurate assessment of tumor boundaries and recognition of occult disease are important oncologic principles in cancer surgeries. However, existing imaging modalities are not optimized for intraoperative cancer imaging applications. We developed a nanobubble (NB) contrast agent for cancer targeting and dual-mode imaging using optical and ultrasound (US) modalities. The contrast agent was fabricated by encapsulating the Texas Red dye in poly (lactic-co-glycolic acid) (PLGA) NBs and conjugating NBs with cancer-targeting ligands. Both one-step and three-step cancer-targeting strategies were tested on the LS174T human colon cancer cell line. For the one-step process, NBs were conjugated with the humanized HuCC49 Delta C(H)2 antibody to target the over-expressed TAG-72 antigen. For the three-step process, cancer cells were targeted by successive application of the biotinylated HuCC49 Delta C(H)2 antibody, streptavidin, and the biotinylated NBs. Both one-step and three-step processes successfully targeted the cancer cells with high binding affinity. NB-assisted dual-mode imaging was demonstrated on a gelatin phantom that embedded multiple tumor simulators at different NB concentrations. Simultaneous fluorescence and US images were acquired for these tumor simulators and linear correlations were observed between the fluorescence/US intensities and the NB concentrations. Our research demonstrated the technical feasibility of using the dual-mode NB contrast agent for cancer targeting and simultaneous fluorescence/US imaging.
Collapse
|
8
|
Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, Povoski SP. Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034020. [PMID: 19566313 DOI: 10.1117/1.3147424] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We developed a novel dual-modal contrast agent for the structural and functional imaging of cancer. The contrast agent was fabricated by encapsulating indocyanine green (ICG) in poly(lactic-co-glycolic acid) (PLGA) microbubbles using a modified double-emulsion method. More stabilized absorption and fluorescence emission characteristics were observed for aqueous and plasma suspensions of ICG-encapsulated microbubbles. The technical feasibility of concurrent structural and functional imaging was demonstrated through a series of benchtop tests in which the aqueous suspension of ICG-encapsulated microbubbles was injected into a transparent tube embedded in an Intralipid phantom at different flow rates and concentrations. Concurrent fluorescence imaging and B-mode ultrasound imaging successfully captured the changes of microbubble flow rate and concentration with high linearity and accuracy. One potential application of the proposed ICG-encapsulated PLGA microbubbles is for the identification and characterization of peritumoral neovasculature for enhanced coregistration between tumor structural and functional boundaries in ultrasound-guided near-infrared diffuse optical tomography.
Collapse
Affiliation(s)
- Ronald X Xu
- The Ohio State University, Department of Biomedical Engineering, 270 Bevis Hall, 1080 Carmack Road, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|