2
|
Cardinal T, Pangal D, Strickland BA, Newton P, Mahmoodifar S, Mason J, Craig D, Simon T, Tew BY, Yu M, Yang W, Chang E, Cabeen RP, Ruzevick J, Toga AW, Neman J, Salhia B, Zada G. Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: a systematic review. Neurooncol Adv 2022; 4:vdab170. [PMID: 35024611 PMCID: PMC8739649 DOI: 10.1093/noajnl/vdab170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background While it has been suspected that different primary cancers have varying predilections for metastasis in certain brain regions, recent advances in neuroimaging and spatial modeling analytics have facilitated further exploration into this field. Methods A systematic electronic database search for studies analyzing the distribution of brain metastases (BMs) from any primary systematic cancer published between January 1990 and July 2020 was conducted using PRISMA guidelines. Results Two authors independently reviewed 1957 abstracts, 46 of which underwent full-text analysis. A third author arbitrated both lists; 13 studies met inclusion/exclusion criteria. All were retrospective single- or multi-institution database reviews analyzing over 8227 BMs from 2599 patients with breast (8 studies), lung (7 studies), melanoma (5 studies), gastrointestinal (4 studies), renal (3 studies), and prostate (1 study) cancers. Breast, lung, and colorectal cancers tended to metastasize to more posterior/caudal topographic and vascular neuroanatomical regions, particularly the cerebellum, with notable differences based on subtype and receptor expression. HER-2-positive breast cancers were less likely to arise in the frontal lobes or subcortical region, while ER-positive and PR-positive breast metastases were less likely to arise in the occipital lobe or cerebellum. BM from lung adenocarcinoma tended to arise in the frontal lobes and squamous cell carcinoma in the cerebellum. Melanoma metastasized more to the frontal and temporal lobes. Conclusion The observed topographical distribution of BM likely develops based on primary cancer type, molecular subtype, and genetic profile. Further studies analyzing this association and relationships to vascular distribution are merited to potentially improve patient treatment and outcomes.
Collapse
Affiliation(s)
- Tyler Cardinal
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Dhiraj Pangal
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ben A Strickland
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Paul Newton
- Department of Aerospace and Mechanical Engineering, Mathematics and The Ellison Institute for Transformative Medicine of USC, Los Angeles, California, USA
| | - Saeedeh Mahmoodifar
- Department of Physics & Astronomy, University of Southern California, Los Angeles, California, USA
| | - Jeremy Mason
- Department of Urology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - David Craig
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Thomas Simon
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Min Yu
- Broad Stem Cell Center, University of Southern California, Los Angeles, California, USA
| | - Wensha Yang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Eric Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Jacob Ruzevick
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Josh Neman
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Eekers DB, In 't Ven L, Roelofs E, Postma A, Alapetite C, Burnet NG, Calugaru V, Compter I, Coremans IEM, Høyer M, Lambrecht M, Nyström PW, Méndez Romero A, Paulsen F, Perpar A, de Ruysscher D, Renard L, Timmermann B, Vitek P, Weber DC, van der Weide HL, Whitfield GA, Wiggenraad R, Troost EGC. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiother Oncol 2018; 128:37-43. [PMID: 29548560 DOI: 10.1016/j.radonc.2017.12.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To create a digital, online atlas for organs at risk (OAR) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging. METHODS CT and 3 Tesla (3T) MR images (slice thickness 1 mm with intravenous contrast agent) were obtained from the same patient and subsequently fused. In addition, a 7T MR without intravenous contrast agent was obtained from a healthy volunteer. Based on discussion between experienced radiation oncologists, the clinically relevant organs at risk (OARs) to be included in the atlas for neuro-oncology were determined, excluding typical head and neck OARs previously published. The draft atlas was delineated by a senior radiation oncologist, 2 residents in radiation oncology, and a senior neuro-radiologist incorporating relevant available literature. The proposed atlas was then critically reviewed and discussed by European radiation oncologists until consensus was reached. RESULTS The online atlas includes one CT-scan at two different window settings and one MR scan (3T) showing the OARs in axial, coronal and sagittal view. This manuscript presents the three-dimensional descriptions of the fifteen consensus OARs for neuro-oncology. Among these is a new OAR relevant for neuro-cognition, the posterior cerebellum (illustrated on 7T MR images). CONCLUSION In order to decrease inter- and intra-observer variability in delineating OARs relevant for neuro-oncology and thus derive consistent dosimetric data, we propose this atlas to be used in photon and particle therapy. The atlas is available online at www.cancerdata.org and will be updated whenever required.
Collapse
Affiliation(s)
- Daniëlle Bp Eekers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands; Proton Therapy Department South-East Netherlands (ZON-PTC), Maastricht, The Netherlands.
| | - Lieke In 't Ven
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands; The-D Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Alida Postma
- Department of Radiology and Nuclear Medicine MUMC+, Maastricht, The Netherlands
| | - Claire Alapetite
- Institut Curie, Radiation Oncology Department, Paris & Proton Center, Orsay, France
| | - Neil G Burnet
- University of Cambridge Department of Oncology, Addenbrooke's Hospital, United Kingdom
| | - Valentin Calugaru
- Institute Curie, Paris, France; Institute Curie, Centre de Protonthérapie d'Orsay, Orsay, France
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Ida E M Coremans
- Leiden University Medical Centre, Department of Radiotherapy, The Netherlands; Holland Proton Therapy Centre, Delft, The Netherlands
| | - Morton Høyer
- Danish Center for Particle Therapy, Aarhus, Denmark
| | - Maarten Lambrecht
- Department of Radiotherapy-Oncology, Leuven Kanker Instituut, UZ Gasthuisberg, Belgium
| | - Petra Witt Nyström
- The Skandion Clinic, Uppsala, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Alejandra Méndez Romero
- Holland Proton Therapy Centre, Delft, The Netherlands; Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Frank Paulsen
- Department of Radiation Oncology, Eberhard-Carls-Universität Tübingen, Germany
| | - Ana Perpar
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands; Department of Radiotherapy-Oncology, Leuven Kanker Instituut, UZ Gasthuisberg, Belgium
| | - Laurette Renard
- Service de Radiothérapie Oncologique Cliniques universitaires St Luc, Brussels, Belgium
| | - Beate Timmermann
- Clinic for Particle Therapy, University Hospital Essen, West German Cancer Center (WTZ), Germany; West German Proton Therapy Center Essen (WPE), Germany; German Cancer Consortium (DKTK), partnersite Essen, Essen, Germany
| | - Pavel Vitek
- Proton Therapy Center Czech, Prague, Czech Republic
| | - Damien C Weber
- Paul Scherrer Institut med. Center for Proton Therapy, Switzerland
| | - Hiske L van der Weide
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Gillian A Whitfield
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, United Kingdom; The Children's Brain Tumour Research Network, University of Manchester, Royal Manchester Children's Hospital, United Kingdom
| | - Ruud Wiggenraad
- Holland Proton Therapy Centre, Delft, The Netherlands; Haaglanden Medisch Centrum, Department of Radiotherapy, Leidschendam, The Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany; German Cancer Consortium (DKTK), partnersite Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), partnersite Dresden, Dresden, Germany
| | | |
Collapse
|
6
|
Eekers DBP, In 't Ven L, Deprez S, Jacobi L, Roelofs E, Hoeben A, Lambin P, de Ruysscher D, Troost EGC. The posterior cerebellum, a new organ at risk? Clin Transl Radiat Oncol 2017; 8:22-26. [PMID: 29594239 PMCID: PMC5862675 DOI: 10.1016/j.ctro.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 11/03/2022] Open
Abstract
Eekers et al. have recently proposed a neuro-oncology atlas, which was co-authored by most centers associated in the European Proton Therapy Network (EPTN; Figure 1). With the introduction of new treatment techniques, such as integrated magnetic resonance imaging and linear accelerators (MR-linac) or particle therapy, the prediction of clinical efficacy of these more costly treatment modalities becomes more relevant. One of the side-effects of brain irradiation, being cognitive decline, is one of the toxicities most difficult to measure and predict. In order to validly compare different treatment modalities, 1) a uniform nomenclature of the organs at risk (OARs), 2) uniform atlas-based delineation [e.g., Eekers et al.], 3) long-term follow-up data with standardized cognitive tests, 4) a large patient population, and 5) (thus derived) validated normal tissue complication probability (NTCP) models are mandatory. Apart from the Gondi model, in which the role of the dose to 40% of both hippocampi (HC) proves to be significantly related to cognition in 18 patients, no similar models are available. So there is a strong need for more NTCP models, on HC, brain tissue and possible other relevant brain structures. In this review we summarize the available evidence on the role of the posterior cerebellum as a possible new organ at risk for cognition, which is deemed relevant for irradiation of brain and head and neck tumors.
Collapse
Affiliation(s)
- Daniëlle B P Eekers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Proton Therapy Department South-East Netherlands (ZON-PTC), Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospital Leuven, Leuven, Belgium.,Dept. of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lieke In 't Ven
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospital Leuven, Leuven, Belgium.,Dept. of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Deprez
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospital Leuven, Leuven, Belgium.,Dept. of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Linda Jacobi
- Dept. of Radiology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Erik Roelofs
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann Hoeben
- Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philippe Lambin
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,KU Leuven, Radiation Oncology University Hospitals Leuven, Department of Radiation Oncology/KU Leuven, Radiation Oncology, Leuven, Belgium.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther G C Troost
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,German Cancer Consortium (DKTK), Partnersite Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|