1
|
A self-adaptive prescription dose optimization algorithm for radiotherapy. OPEN PHYSICS 2021. [DOI: 10.1515/phys-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Purpose
The aim of this study is to investigate an implementation method and the results of a voxel-based self-adaptive prescription dose optimization algorithm for intensity-modulated radiotherapy.
Materials and methods
The self-adaptive prescription dose optimization algorithm used a quadratic objective function, and the optimization engine was implemented using the molecular dynamics. In the iterative optimization process, the optimization prescription dose changed with the relationship between the initial prescription dose and the calculated dose. If the calculated dose satisfied the initial prescription dose, the optimization prescription dose was equal to the calculated dose; otherwise, the optimization prescription dose was equal to the initial prescription dose. We assessed the performance of the self-adaptive prescription dose optimization algorithm with two cases: a mock head and neck case and a breast case. Isodose lines, dose–volume histogram, and dosimetric parameters were compared between the conventional molecular dynamics optimization algorithm and the self-adaptive prescription dose optimization algorithm.
Results
The self-adaptive prescription dose optimization algorithm produces the different optimization results compared with the conventional molecular dynamics optimization algorithm. For the mock head and neck case, the planning target volume (PTV) dose uniformity improves, and the dose to organs at risk is reduced, ranging from 1 to 4%. For the breast case, the use of self-adaptive prescription dose optimization algorithm also leads to improvements in the dose distribution, with the dose to organs at risk almost unchanged.
Conclusion
The self-adaptive prescription dose optimization algorithm can generate an ideal clinical plan more effectively, and it could be integrated into a treatment planning system after more cases are studied.
Collapse
|
2
|
Liu H, Dong P, Xing L. Using measurable dosimetric quantities to characterize the inter-structural tradeoff in inverse planning. Phys Med Biol 2017; 62:6804-6821. [PMID: 28447959 DOI: 10.1088/1361-6560/aa6fcb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traditional inverse planning relies on the use of weighting factors to balance the conflicting requirements of different structures. Manual trial-and-error determination of weighting factors has long been recognized as a time-consuming part of treatment planning. The purpose of this work is to develop an inverse planning framework that parameterizes the dosimetric tradeoff among the structures with physically meaningful quantities to simplify the search for clinically sensible plans. In this formalism, instead of using weighting factors, the permissible variation range of the prescription dose or dose volume histogram (DVH) of the involved structures are used to characterize the 'importance' of the structures. The inverse planning is then formulated into a convex feasibility problem, called the dosimetric variation-controlled model (DVCM), whose goal is to generate plans with dosimetric or DVH variations of the structures consistent with the pre-specified values. For simplicity, the dosimetric variation range for a structure is extracted from a library of previous cases which possess similar anatomy and prescription. A two-phase procedure (TPP) is designed to solve the model. The first phase identifies a physically feasible plan to satisfy the prescribed dosimetric variation, and the second phase automatically improves the plan in case there is room for further improvement. The proposed technique is applied to plan two prostate cases and two head-and-neck cases and the results are compared with those obtained using a conventional CVaR approach and with a moment-based optimization scheme. Our results show that the strategy is able to generate clinically sensible plans with little trial and error. In all cases, the TPP generates a very competitive plan as compared to those obtained using the alternative approaches. Particularly, in the planning of one of the head-and-neck cases, the TPP leads to a non-trivial improvement in the resultant dose distribution-the fractional volumes receiving a dose above 20 Gy for the spinal cord are reduced by more than 40% when compared to the alternative schemes, while maintaining the same PTV coverage. With physically more meaningful modeling of the inter-structural tradeoff, the reported technique enables us to substantially reduce the need for trial-and-error adjustment of the model parameters. The new formalism also opens new opportunities for incorporating prior knowledge to facilitate the treatment planning process.
Collapse
Affiliation(s)
- Hongcheng Liu
- Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305-5847, United States of America
| | | | | |
Collapse
|
3
|
Wang H, Xing L. Application programming in C# environment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning. J Appl Clin Med Phys 2016; 17:189-203. [PMID: 27929493 PMCID: PMC5690512 DOI: 10.1120/jacmp.v17i6.6425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/09/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
An autopilot scheme of volumetric‐modulated arc therapy (VMAT)/intensity‐modulated radiation therapy (IMRT) planning with the guidance of prior knowledge is established with recorded interactions between a planner and a commercial treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is applied to record some common planner‐TPS interactions as subroutines. The TPS used in this study is a Windows‐based Eclipse system. The interactions of our application program with Eclipse TPS are realized through a series of subroutines obtained by prerecording the mouse clicks or keyboard strokes of a planner in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection process is developed as a specific example of the proposed “scripting” method. The autopiloted planning is navigated by a decision function constructed with a reference plan that has the same prescription and similar anatomy with the case at hand. The calculation proceeds by alternating between the Eclipse optimization and the outer‐loop optimization independent of the Eclipse. In the C# program, the dosimetric characteristics of a reference treatment plan are used to assess and modify the Eclipse planning parameters and to guide the search for a clinically sensible treatment plan. The approach is applied to plan a head and neck (HN) VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of application programming method in C# environment with recorded interactions of planner‐TPS. The process mimics a planner's planning process and automatically provides clinically sensible treatment plans that would otherwise require a large amount of manual trial and error of a planner. The proposed technique enables us to harness a commercial TPS by application programming via the use of recorded human computer interactions and provides an effective tool to greatly facilitate the treatment planning process. PACS number(s): 87.55.D‐, 87.55.kd, 87.55.de
Collapse
Affiliation(s)
- Henry Wang
- School of Medicine, Stanford University.
| | | |
Collapse
|
4
|
Wahl N, Bangert M, Kamerling CP, Ziegenhein P, Bol GH, Raaymakers BW, Oelfke U. Physically constrained voxel-based penalty adaptation for ultra-fast IMRT planning. J Appl Clin Med Phys 2016; 17:172-189. [PMID: 27455484 PMCID: PMC5690048 DOI: 10.1120/jacmp.v17i4.6117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/21/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022] Open
Abstract
Conventional treatment planning in intensity-modulated radiation therapy (IMRT) is a trial-and-error process that usually involves tedious tweaking of optimization parameters. Here, we present an algorithm that automates part of this process, in particular the adaptation of voxel-based penalties within normal tissue. Thereby, the proposed algorithm explicitly considers a priori known physical limitations of photon irradiation. The efficacy of the developed algorithm is assessed during treatment planning studies comprising 16 prostate and 5 head and neck cases. We study the eradication of hot spots in the normal tissue, effects on target coverage and target conformity, as well as selected dose volume points for organs at risk. The potential of the proposed method to generate class solutions for the two indications is investigated. Run-times of the algorithms are reported. Physically constrained voxel-based penalty adaptation is an adequate means to automatically detect and eradicate hot-spots during IMRT planning while maintaining target coverage and conformity. Negative effects on organs at risk are comparably small and restricted to lower doses. Using physically constrained voxel-based penalty adaptation, it was possible to improve the generation of class solutions for both indications. Considering the reported run-times of less than 20 s, physically constrained voxel-based penalty adaptation has the potential to reduce the clinical workload during planning and automated treatment plan generation in the long run, facilitating adaptive radiation treatments.
Collapse
|
5
|
Modiri A, Gu X, Hagan AM, Sawant A. Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization. IEEE Trans Biomed Eng 2016; 64:980-989. [PMID: 27362755 DOI: 10.1109/tbme.2016.2585114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach. METHODS We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm-a popular RT optimization technique is also implemented and used. RESULTS The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations. CONCLUSION The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO. SIGNIFICANCE RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.
Collapse
|
6
|
Ziegenhein P, Ph Kamerling C, Oelfke U. Interactive dose shaping part 1: a new paradigm for IMRT treatment planning. Phys Med Biol 2016; 61:2457-70. [PMID: 26948145 PMCID: PMC5390946 DOI: 10.1088/0031-9155/61/6/2457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 11/27/2022]
Abstract
In this work we present a novel treatment planning technique called interactive dose shaping (IDS) to be employed for the optimization of intensity modulated radiation therapy (IMRT). IDS does not rely on a Newton-based optimization algorithm which is driven by an objective function formed of dose volume constraints on pre-segmented volumes of interest (VOIs). Our new planning technique allows for direct, interactive adaptation of localized planning features. This is realized by a dose modification and recovery (DMR) planning engine which implements a two-step approach: firstly, the desired localized plan adaptation is imposed on the current plan (modification) while secondly inevitable, undesired disturbances of the dose pattern elsewhere are compensated for automatically by the recovery module. Together with an ultra-fast dose update calculation method the DMR engine has been implemented in a newly designed 3D therapy planning system Dynaplan enabling true real-time interactive therapy planning. Here we present the underlying strategy and algorithms of the DMR based planning concept. The functionality of the IDS planning approach is demonstrated for a phantom geometry of clinical resolution and size.
Collapse
Affiliation(s)
- Peter Ziegenhein
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Cornelis Ph Kamerling
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| |
Collapse
|
7
|
Zarepisheh M, Uribe-Sanchez AF, Li N, Jia X, Jiang SB. A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization. Med Phys 2014; 41:041705. [PMID: 24694125 DOI: 10.1118/1.4866886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. METHODS In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. RESULTS The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly allowing for the generation of plans with better trade-offs among different clinical objectives. CONCLUSIONS The authors have developed a mathematical framework for radiotherapy treatment optimization using voxel-based parameters. The authors can improve the plan quality by adjusting voxel-based weighting factors and exploring the unique and large Pareto surface which include all the Pareto surfaces that can be generated by organ-based model using different objective functions.
Collapse
Affiliation(s)
- Masoud Zarepisheh
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843
| | - Andres F Uribe-Sanchez
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843
| | - Nan Li
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843
| | - Xun Jia
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843
| | - Steve B Jiang
- Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037-0843
| |
Collapse
|
8
|
Schlaefer A, Viulet T, Muacevic A, Fürweger C. Multicriteria optimization of the spatial dose distribution. Med Phys 2014; 40:121720. [PMID: 24320506 DOI: 10.1118/1.4828840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose-volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach. METHODS The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution. RESULTS To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose-volume histograms illustrates the importance of spatial information for achieving the trade-offs. CONCLUSIONS The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.
Collapse
Affiliation(s)
- Alexander Schlaefer
- Medical Robotics Group, Universität zu Lübeck, Lübeck 23562, Germany and Institute of Medical Technology, Hamburg University of Technology, Hamburg 21073, Germany
| | | | | | | |
Collapse
|
9
|
Li N, Zarepisheh M, Uribe-Sanchez A, Moore K, Tian Z, Zhen X, Graves YJ, Gautier Q, Mell L, Zhou L, Jia X, Jiang S. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs. Phys Med Biol 2013; 58:8725-38. [PMID: 24301071 DOI: 10.1088/0031-9155/58/24/8725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using our in-house optimization engine.
Collapse
Affiliation(s)
- Nan Li
- Department of Radiation Medicine and Applied Sciences, Center for Advanced Radiotherapy Technologies and University of California San Diego, La Jolla, CA 92037-0843, USA. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Süss P, Bortz M, Küfer KH, Thieke C. The critical spot eraser—a method to interactively control the correction of local hot and cold spots in IMRT planning. Phys Med Biol 2013; 58:1855-67. [DOI: 10.1088/0031-9155/58/6/1855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Fredriksson A. Automated improvement of radiation therapy treatment plans by optimization under reference dose constraints. Phys Med Biol 2012; 57:7799-811. [DOI: 10.1088/0031-9155/57/23/7799] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Lan Y, Li C, Ren H, Zhang Y, Min Z. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method. Phys Med Biol 2012; 57:6407-28. [PMID: 22996086 DOI: 10.1088/0031-9155/57/20/6407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.
Collapse
Affiliation(s)
- Yihua Lan
- School of Computer Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, People's Republic of China.
| | | | | | | | | |
Collapse
|