1
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
2
|
Pu Y, Sordillo LA, Yang Y, Alfano RR. Key native fluorophores analysis of human breast cancer tissues using Gram-Schmidt subspace method. OPTICS LETTERS 2014; 39:6787-6790. [PMID: 25502997 DOI: 10.1364/ol.39.006787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The native fluorescence (NFL) spectra of human cancerous and normal breast tissues were excited by a selected wavelength of 300 nm to investigate the efficacy of two key fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH), as cancer biomarkers. The basis spectra of these key fluorophores' subspaces spanned by the corresponding emission spectra are obtained by the Gram-Schmidt method. A support vector machine (SVM) classifier is trained in the subspace to evaluate the sensitivity, specificity, and accuracy. This research demonstrates that the NFL spectroscopy measurements are effective to detect changes of fluorophores compositions in tissues due to the development of cancer.
Collapse
|
3
|
Pu Y, Tang R, Xue J, Wang WB, Xu B, Achilefu S. Synthesis of dye conjugates to visualize the cancer cells using fluorescence microscopy. APPLIED OPTICS 2014; 53:2345-2351. [PMID: 24787403 PMCID: PMC7328305 DOI: 10.1364/ao.53.002345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
The clinical diagnosis of most cancers is based on evaluation of histology microscopic slides to view the size and shape of cellular nuclei and morphological structure of tissue. To achieve this goal for in vivo and in-deep tissues, near infrared dyes-bovine serum albumin and immunoglobulin G conjugates were synthesized. The spectral study shows that the absorption and fluorescence of the dye conjugates are in the "tissue optical window" spectral ranges between 650 and 900 nm. The internalization and pinocytosis of the synthesized compounds were investigated at cell level using fluorescence microscopy to obtain the optimal concentration and staining time.
Collapse
Affiliation(s)
- Yang Pu
- Department of Physics at the City College of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - Rui Tang
- Department of Radiology, Washington University in St. Louis, School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
| | - Jianpeng Xue
- Department of Radiology, Washington University in St. Louis, School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - W. B. Wang
- Department of Physics at the City College of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - Baogang Xu
- Department of Radiology, Washington University in St. Louis, School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
| | - S. Achilefu
- Department of Radiology, Washington University in St. Louis, School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
4
|
Jin H, Xu M, Padakanti PK, Liu Y, Lapi S, Tu Z. Preclinical evaluation of the novel monoclonal antibody H6-11 for prostate cancer imaging. Mol Pharm 2013; 10:3655-64. [PMID: 23964702 DOI: 10.1021/mp400130w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological properties of the novel monoclonal antibody (mAb) H6-11 and its potential utility for oncological imaging studies were evaluated using in vitro and in vivo assays. Immunoreactivity of H6-11 to the human prostate cancer PC-3 cell line and solid tumor xenografts was initially demonstrated using immunofluorescence staining; the specificity of H6-11 for prostate cancer was further evaluated using a commercial array of human prostate cancer and normal tissue samples (n=49) in which H6-11 detected 95% of prostate adenocarcinomas. The Kd value of 61.7±30 nM was determined using 125I-labeled H6-11. Glycosylation analysis suggested the antigenic epitope of the glycan is an O-linked β-N-acetylglucoside (O-GlcNAc) group. Imaging studies of PC-3 tumor-bearing mice were performed using both optical imaging with NIR fluorescent dye-labeled H6-11 and microPET imaging with 89Zr-labeled H6-11. These in vivo studies revealed that the labeled probes accumulated in PC-3 tumors 48-72 h postinjection, although significant retention in liver was also observed. By 120 h postinjection, the tumors were still evident, although the liver showed significant clearance. These studies suggest that the mAb H6-11 may be a useful tool to detect prostate cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine , 510 S. Kingshighway Boulevard, St. Louis, Missouri 63110, United States
| | | | | | | | | | | |
Collapse
|