1
|
Bustillo JPO, Paino J, Barnes M, Cameron M, Rosenfeld AB, Lerch MLF. Characterization of selected additive manufacturing materials for synchrotron monochromatic imaging and broad-beam radiotherapy at the Australian synchrotron-imaging and medical beamline. Phys Med Biol 2024; 69:115055. [PMID: 38718813 DOI: 10.1088/1361-6560/ad48f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Objective.This study aims to characterize radiological properties of selected additive manufacturing (AM) materials utilizing both material extrusion and vat photopolymerization technologies. Monochromatic synchrotron x-ray images and synchrotron treatment beam dosimetry were acquired at the hutch 3B and 2B of the Australian Synchrotron-Imaging and Medical Beamline.Approach.Eight energies from 30 keV up to 65 keV were used to acquire the attenuation coefficients of the AM materials. Comparison of theoretical, and experimental attenuation data of AM materials and standard solid water for MV linac was performed. Broad-beam dosimetry experiment through attenuated dose measurement and a Geant4 Monte Carlo simulation were done for the studied materials to investigate its attenuation properties specific for a 4 tesla wiggler field with varying synchrotron radiation beam qualities.Main results.Polylactic acid (PLA) plus matches attenuation coefficients of both soft tissue and brain tissue, while acrylonitrile butadiene styrene, Acrylonitrile styrene acrylate, and Draft resin have close equivalence to adipose tissue. Lastly, PLA, co-polyester plus, thermoplastic polyurethane, and White resins are promising substitute materials for breast tissue. For broad-beam experiment and simulation, many of the studied materials were able to simulate RMI457 Solid Water and bolus within ±10% for the three synchrotron beam qualities. These results are useful in fabricating phantoms for synchrotron and other related medical radiation applications such as orthovoltage treatments.Significance and conclusion.These 3D printing materials were studied as potential substitutes for selected tissues such as breast tissue, adipose tissue, soft-tissue, and brain tissue useful in fabricating 3D printed phantoms for synchrotron imaging, therapy, and orthovoltage applications. Fabricating customizable heterogeneous anthropomorphic phantoms (e.g. breast, head, thorax) and pre-clinical animal phantoms (e.g. rodents, canine) for synchrotron imaging and radiotherapy using AM can be done based on the results of this study.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000, Metro Manila, The Philippines
| | - Jason Paino
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Anatoly B Rosenfeld
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Niver AP, Hammer CG, Culberson WS, Jacqmin D, Pogue BW. Non-contact scintillator imaging dosimetry for total body irradiation in radiotherapy. Phys Med Biol 2024; 69:035017. [PMID: 38171002 PMCID: PMC10915642 DOI: 10.1088/1361-6560/ad1a23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Objective.The goal of this work was to assess the potential use of non-contact scintillator imaging dosimetry for tracking delivery in total body irradiation (TBI).Approach. Studies were conducted to measure the time-gated light signals caused by radiation exposure to scintillators that were placed on tissue. The purpose was to assess efficacy in conditions common for TBI, such as the large source to surface distance (SSD) commonly used, the reduced dose rate, the inclusion of a plexiglass spoiler, angle of incidence and effects of peripheral patient support structures. Dose validation work was performed on phantoms that mimicked human tissue optical properties and body geometry. For this work, 1.5 cm diameter scintillating disks were developed and affixed to phantoms under various conditions. A time-gated camera synchronized to the linac pulses was used for imaging. Scintillation intensity was quantified in post processing and the values verified with simultaneous thermolumiescent dosimeter (TLD) measurements. Mean scintillation values in each region were compared to TLD measurements to produce dose response curves, and scatter effects from the spoiler and patient bed were quantified.Main results.The dose determined by scintillators placed in TBI conditions agreed with TLD dose determinations to within 2.7%, and did so repeatedly within 1.0% standard deviation variance. A linear fit between scintillator signal and TLD dose was achieved with anR2= 0.996 across several body sites. Scatter from the patient bed resulted in a maximum increase of 19% in dose.Significance.This work suggests that non-contact scintillator imaging dosimetry could be used to verify dose in real time to patients undergoing TBI at the prescribed long SSD and low dose rate. It also has shown that patient transport stretchers can significantly influence surface dose by increasing scatter.
Collapse
Affiliation(s)
- Alexander P Niver
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Clifford G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Dustin Jacqmin
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Brian W Pogue
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| |
Collapse
|
3
|
Endarko E, Aisyah S, Carina CCC, Nazara T, Sekartaji G, Nainggolan A. Evaluation of Dosimetric Properties of Handmade Bolus for Megavoltage Electron and Photon Radiation Therapy. J Biomed Phys Eng 2021; 11:735-746. [PMID: 34904070 PMCID: PMC8649160 DOI: 10.31661/jbpe.v0i0.2004-1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022]
Abstract
Background: The use of boluses for radiation therapy is very necessary to overcome the problem of sending inhomogeneous doses in the target volume due to irregularities on the surface of the skin.
The bolus materials for radiation therapy need to be evaluated. Objective: The present study aims to evaluate some handmade boluses for megavoltage electron and photon radiation therapy. Several dosimetric properties of the synthesized boluses,
including relative electron density (RED), transmission factor, mass attenuation coefficient, percentage depth dose (PDD), and percentage surface dose (PSD) were investigated. Material and Methods: In this experimental study, we evaluated natural rubber, silicone rubber mixed either with aluminum or bismuth, paraffin wax, red plasticine, and play-doh as soft tissue equivalent.
CT-simulator, in combination with ECLIPSE software, was used to determine bolus density. Meanwhile, Linear Accelerator (Linac) Clinac iX (Varian Medical Systems, Palo Alto), solid water phantom,
and Farmer ionization chamber were used to measure and analyze of dosimetric properties. Results: The RED result analysis has proven that all synthesized boluses are equivalent to the density of soft tissue such as fat, breast, lung, and liver. The dosimetric evaluation also shows that all
synthesized boluses have a density similar to the density of water and can increase the surface dose with a value ranging from 6-20% for electron energy and 30-50% for photon energy. Conclusion: In general, all synthesized boluses have an excellent opportunity to be used as an alternative tissue substitute in the surface area of the body when using megavoltage electron and photon energy.
Collapse
Affiliation(s)
- Endarko Endarko
- PhD, Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Siti Aisyah
- BSc, Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Chycilia Clara Chandra Carina
- BSc, Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Trimawarti Nazara
- BSc, Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Gandes Sekartaji
- BSc, Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS - Sukolilo Surabaya 60111, East Java, Indonesia
| | - Andreas Nainggolan
- MSc, Mochtar Riady Comprehensive Cancer Center Siloam Hospitals Semanggi, Jakarta, Indonesia
| |
Collapse
|
4
|
Jarvis LA, Hachadorian RL, Jermyn M, Bruza P, Alexander DA, Tendler II, Williams BB, Gladstone DJ, Schaner PE, Zaki BI, Pogue BW. Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery. Int J Radiat Oncol Biol Phys 2021; 109:1627-1637. [PMID: 33227443 PMCID: PMC10544920 DOI: 10.1016/j.ijrobp.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The value of Cherenkov imaging as an on-patient, real-time, treatment delivery verification system was examined in a 64-patient cohort during routine radiation treatments in a single-center study. METHODS AND MATERIALS Cherenkov cameras were mounted in treatment rooms and used to image patients during their standard radiation therapy regimen for various sites, predominantly for whole breast and total skin electron therapy. For most patients, multiple fractions were imaged, with some involving bolus or scintillators on the skin. Measures of repeatability were calculated with a mean distance to conformity (MDC) for breast irradiation images. RESULTS In breast treatments, Cherenkov images identified fractions when treatment delivery resulted in dose on the contralateral breast, the arm, or the chin and found nonideal bolus positioning. In sarcoma treatments, safe positioning of the contralateral leg was monitored. For all 199 imaged breast treatment fields, the interfraction MDC was within 7 mm compared with the first day of treatment (with only 7.5% of treatments exceeding 3 mm), and all but 1 fell within 7 mm relative to the treatment plan. The value of imaging dose through clear bolus or quantifying surface dose with scintillator dots was examined. Cherenkov imaging also was able to assess field match lines in cerebral-spinal and breast irradiation with nodes. Treatment imaging of other anatomic sites confirmed the value of surface dose imaging more broadly. CONCLUSIONS Daily radiation therapy can be imaged routinely via Cherenkov emissions. Both the real-time images and the posttreatment, cumulative images provide surrogate maps of surface dose delivery that can be used for incident discovery and/or continuous improvement in many delivery techniques. In this initial 64-patient cohort, we discovered 6 minor incidents using Cherenkov imaging; these otherwise would have gone undetected. In addition, imaging provides automated, quantitative metrics useful for determining the quality of radiation therapy delivery.
Collapse
Affiliation(s)
- Lesley A Jarvis
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| | | | - Michael Jermyn
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | | | - Irwin I Tendler
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Benjamin B Williams
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - David J Gladstone
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Philip E Schaner
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bassem I Zaki
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
5
|
Robertson FM, Couper MB, Kinniburgh M, Monteith Z, Hill G, Pillai SA, Adamson DJA. Ninjaflex vs Superflab: A comparison of dosimetric properties, conformity to the skin surface, Planning Target Volume coverage and positional reproducibility for external beam radiotherapy. J Appl Clin Med Phys 2021; 22:26-33. [PMID: 33689216 PMCID: PMC8035556 DOI: 10.1002/acm2.13147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
Background and purpose When planning and delivering radiotherapy, ideally bolus should be in direct contact with the skin surface. Varying air gaps between the skin surface and bolus material can result in discrepancies between the intended and delivered dose. This study assessed a three‐dimensional (3D) printed flexible bolus to determine whether it could improve conformity to the skin surface, reduce air gaps, and improve planning target volume coverage, compared to a commercial bolus material, Superflab. Materials and methods An anthropomorphic head phantom was CT scanned to generate photon and electron treatment plans using virtual bolus. Two 3D printing companies used the material Ninjaflex to print bolus for the head phantom, which we designated Ninjaflex1 and Ninjaflex2. The phantom was scanned a further 15 more times with the different bolus materials in situ allowing plan comparison of the virtual to physical bolus in terms of planning target volume coverage, dose at the prescription point, skin dose, and air gap volumes. Results Superflab produced a larger volume and a greater number of air gaps compared to both Ninjaflex1 and Ninjaflex2, with the largest air gap volume of 12.02 cm3. Our study revealed that Ninjaflex1 produced the least variation from the virtual bolus clinical goal values for all modalities, while Superflab displayed the largest variances in conformity, positional accuracy, and clinical goal values. For PTV coverage Superflab produced significant percentage differences for the VMAT and Electron3 plans when compared to the virtual bolus plans. Superflab also generated a significant difference in prescription point dose for the 3D conformal plan. Conclusion Compared to Superflab, both Ninjaflex materials improved conformity and reduced the variance between the virtual and physical bolus clinical goal values. Results illustrate that custom‐made Ninjaflex bolus could be useful clinically and may improve the accuracy of the delivered dose.
Collapse
Affiliation(s)
- Fiona M Robertson
- Radiotherapy Department, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| | - Megan B Couper
- Medical Physics Department, Ninewells Hospital & Medical School, Dundee, UK
| | - Margaret Kinniburgh
- Radiotherapy Department, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| | - Zoe Monteith
- Radiotherapy Department, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| | - Gareth Hill
- Radiotherapy Department, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| | | | - Douglas J A Adamson
- Radiotherapy Department, Ninewells Hospital & Medical School, NHS Tayside, Dundee, UK
| |
Collapse
|
6
|
Fiedler DA, Hoffman S, Roeske JC, Hentz CL, Small W, Kang H. Dosimetric assessment of brass mesh bolus and transparent polymer-gel type bolus for commonly used breast treatment delivery techniques. Med Dosim 2021; 46:e10-e14. [PMID: 33536152 DOI: 10.1016/j.meddos.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
We investigated skin dose enhancements of brass mesh bolus (BMB) and a recently developed transparent polymer-gel bolus (PGB) for clinically relevant breast treatment delivery techniques. The dose enhancement of the breast surface with BMB and PGB were compared to that of tissue-equivalent bolus. Three breast treatment plans were generated on CT scans of an anthropomorphic chest phantom: tangential step-and-shoot 3D conformal (3DCRT) planned using Field-in-Field (FiF), tangential sliding-window 3DCRT using Electronic Compensator (EC), and volumetric modulated arc therapy (VMAT). All plans were created using 6 MV photons and a prescription dose (Rx) of 180 cGy per fraction. Skin doses of all 3 plans were measured with radiochromic films, separately delivered in triplicate. Each plan was delivered to the phantom without bolus, and then with BMB (1 or 2 layers; 3 or 10 mm tissue-equivalent), PGB, and Superflab (3, 5, and 10 mm tissue-equivalent). Doses were determined by reading the radiochromic films with a flatbed scanner, and analyzing the images using a calibration curve for each specific batch. For all bolus types and plans, surface doses averaged over the 3 measurements were between 88.4% and 107.4% of Rx. Without bolus, average measured skin doses were between 51.2% and 64.2% of Rx. Skin doses with BMB and PGB were comparable to that with tissue-equivalent bolus. Over all 3 treatment delivery techniques, using BMB resulted in average skin doses of 92.8% and 102.1% for 1- and 2 layers, respectively, and using PGB results in average skin doses of 94.8%, 98.2%, and 99.7% for 3, 5, and 10-mm tissue-equivalent, respectively. The average measured skin doses with BMB and PGB agreed within ± 3% compared to the tissue-equivalent thickness bolus. We concluded that BMB and PGB are clinically equivalent in skin dose enhancement for breast treatment as the 3, 5, and 10 mm tissue-equivalent bolus.
Collapse
Affiliation(s)
- Derek A Fiedler
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60637 USA
| | - Sabrina Hoffman
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60637 USA
| | - John C Roeske
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardine Cancer Center, Loyola University Chicago, Maywood, IL, 60637 USA
| | - Courtney L Hentz
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardine Cancer Center, Loyola University Chicago, Maywood, IL, 60637 USA
| | - William Small
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardine Cancer Center, Loyola University Chicago, Maywood, IL, 60637 USA
| | - Hyejoo Kang
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardine Cancer Center, Loyola University Chicago, Maywood, IL, 60637 USA.
| |
Collapse
|
7
|
The Effect of Postmastectomy Radiation Therapy on Breast Implants: Material Analysis on Silicone and Polyurethane Prosthesis. Ann Plast Surg 2019; 81:228-234. [PMID: 29781852 DOI: 10.1097/sap.0000000000001461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The pathogenic mechanism underlying capsular contracture is still unknown. It is certainly a multifactorial process, resulting from human body reaction, biofilm activation, bacteremic seeding, or silicone exposure. The scope of the present article is to investigate the effect of hypofractionated radiotherapy protocol (2.66 Gy × 16 sessions) both on silicone and polyurethane breast implants. METHODS Silicone implants and polyurethane underwent irradiation according to a hypofractionated radiotherapy protocol for the treatment of breast cancer. After irradiation implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, infrared spectra in attenuated total reflectance mode, nuclear magnetic resonance, and field emission scanning electron microscopy. RESULTS At superficial analysis, irradiated silicone samples show several visible secondary and tertiary blebs. Polyurethane implants showed an open cell structure, which closely resembles a sponge. Morphological observation of struts from treated polyurethane sample shows a more compact structure, with significantly shorter and thicker struts compared with untreated sample. The infrared spectra in attenuated total reflectance mode spectra of irradiated and control samples were compared either for silicon and polyurethane samples. In the case of silicone-based membranes, treated and control specimens showed similar bands, with little differences in the treated one. Nuclear magnetic resonance spectra on the fraction soluble in CDCl3 support these observations. Tensile tests on silicone samples showed a softer behavior of the treated ones. Tensile tests on Polyurethane samples showed no significant differences. CONCLUSIONS Polyurethane implants seem to be more resistant to radiotherapy damage, whereas silicone prosthesis showed more structural, mechanical, and chemical modifications.
Collapse
|
8
|
Park JM, Son J, An HJ, Kim JH, Wu HG, Kim JI. Bio-compatible patient-specific elastic bolus for clinical implementation. ACTA ACUST UNITED AC 2019; 64:105006. [DOI: 10.1088/1361-6560/ab1c93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Kong Y, Yan T, Sun Y, Qian J, Zhou G, Cai S, Tian Y. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study. J Appl Clin Med Phys 2019; 20:348-355. [PMID: 30402935 PMCID: PMC6333182 DOI: 10.1002/acm2.12489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the study was to compare the dose differences between two kinds of materials (silica gel and hydrogel) used to prepare boluses based on three-dimensional (3D) printing technologies and commercial bolus in head phantoms simulating nose, ear, and parotid gland radiotherapy. METHODS AND MATERIALS We used 3D printing technology to make silica gel and hydrogel boluses. To evaluate the clinical feasibility, intensity modulated radiation therapy (IMRT) plans were created for head phantoms that were bolus-free or had a commercial bolus, a silica gel bolus, or a hydrogel bolus. Dosimetry differences were compared in simulating nose, ear, and parotid gland radiotherapy separately. RESULTS The air gaps were smaller in the silica gel and hydrogel bolus than the commercial one. In nose plans, it was shown that the V95% (relative volume that is covered by at least 95% of the prescription dose) of the silica gel (99.86%) and hydrogel (99.95%) bolus were better than the commercial one (98.39%) and bolus-free (87.52%). Similarly, the homogeneity index (HI) and conformity index (CI) of the silica gel (0.06; 0.79) and hydrogel (0.058; 0.80) bolus were better than the commercial one (0.094; 0.72) and bolus-free (0.59; 0.53). The parameters of results (HI, CI, V95% ) were also better in 3D printing boluses than in the commercial bolus or without bolus in ear and parotid plans. CONCLUSIONS Silica gel and hydrogel boluses were not only good for fit and a high level of comfort and repeatability, but also had better parameters in IMRT plans. They could replace the commercial bolus for clinical use.
Collapse
Affiliation(s)
- Yuehong Kong
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Tengfei Yan
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Yanze Sun
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Jianjun Qian
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Gang Zhou
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Shang Cai
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| | - Ye Tian
- Department of Radiotherapy and OncologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Radiotherapy and OncologySoochow UniversitySuzhouChina
| |
Collapse
|
10
|
Dipasquale G, Poirier A, Sprunger Y, Uiterwijk JWE, Miralbell R. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat Oncol 2018; 13:203. [PMID: 30340612 PMCID: PMC6194575 DOI: 10.1186/s13014-018-1148-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Computed tomography (CT) data used for patient radiotherapy planning can nowadays be used to create 3D-printed boluses. Nevertheless, this methodology requires a second CT scan and planning process when immobilization masks are used in order to fit the bolus under it for treatment. This study investigates the use of a high-grade surface-scanner to produce, prior to the planning CT scan, a 3D-printed bolus in order to increase the workflow efficiency, improve treatment quality and avoid extra radiation dose to the patient. METHODS The scanner capabilities were tested on a phantom and on volunteers. A phantom was used to produce boluses in the orbital region either from CT data (resolution ≈1 mm), or from surface-scanner images (resolution 0.05 mm). Several 3D-printing techniques and materials were tested. To quantify which boluses fit best, they were placed on the phantom and scanned by CT. Hounsfield Unit (HU) profiles were traced perpendicular to the phantom's surface. The minimum HU in the profiles was compared to the HU values for calibrated air-gaps. Boluses were then created from surface images of volunteers to verify the feasibility of surface-scanner use in-vivo. RESULTS Phantom based tests showed a better fit of boluses modeled from surface-scanner than from CT data. Maximum bolus-to-skin air gaps were 1-2 mm using CT models and always < 0.6 mm using surface-scanner models. Tests on volunteers showed good and comfortable fit of boluses produced from surface-scanner images acquired in 0.6 to 7 min. Even in complex surface regions of the body such as ears and fingers, the high-resolution surface-scanner was able to acquire good models. A breast bolus model generated from images acquired in deep inspiration breath hold was also successful. None of the 3D-printed bolus using surface-scanner models required enlarging or shrinking of the initial model acquired in-vivo. CONCLUSIONS Regardless of the material or printing technique, 3D-printed boluses created from high-resolution surface-scanner images proved to be superior in fitting compared to boluses created from CT data. Tests on volunteers were promising, indicating the possibility to improve overall radiotherapy treatments, primarily for megavoltage X-rays, using bolus modeled from a high-resolution surface-scanner even in regions of complex surface anatomy.
Collapse
Affiliation(s)
- Giovanna Dipasquale
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.
| | | | | | | | - Raymond Miralbell
- Department of Radiation Oncology, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|