1
|
Barker MS, Knight JL, Dean RJ, Richards LJ, Robinson GA. Adynamic spoken language in corpus callosum dysgenesis. Cortex 2024; 180:42-54. [PMID: 39317110 DOI: 10.1016/j.cortex.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Corpus callosum dysgenesis (CCD) is a congenital brain malformation that occurs when the development of the corpus callosum is disrupted, either partially or completely. The cognitive outcomes in individuals with CCD vary greatly, but generally the neuropsychological profile is characterised by slow processing speed, poor transfer of interhemispheric sensory-motor information, and impaired complex problem solving. Core language skills are often preserved in CCD, but there is some evidence that complex language may be impaired. Thus, the current study sought to examine whether spontaneous speech output was reduced in a cohort of individuals with CCD compared to age-matched controls. We further explored a series of factors that may be contributing to poor spontaneous speech in CCD, such as difficulties generating, selecting, and sequencing ideas for expression, as well as apathy and slowed processing speed. A cohort of 25 individuals with CCD and 39 neurotypical controls were enrolled in this study. Participants completed a picture description task to measure spontaneous speech output, alongside a series of cognitive and language baseline tests. Verbal and nonverbal fluency tasks gauged idea generation and sequencing, and sentence-level selection tasks measured idea selection. We found that, despite having largely intact core language skills, individuals with CCD produced significantly less spontaneous speech on the picture description task than controls. This language profile may be described as "adynamic". Further, we found that poor spontaneous speech output in CCD was related to problems generating ideas for expression, as individuals with CCD performed below controls on the verbal and nonverbal fluency tasks. Exploratory analyses revealed that apathy and slowed processing speed may be contributing factors. Adynamia in CCD is a novel finding that may be an intervention target for improving communication skills in this population.
Collapse
Affiliation(s)
- Megan S Barker
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Jacquelyn L Knight
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Ryan J Dean
- Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia; Department of Neuroscience, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Gail A Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
2
|
Yuan J, Song X, Kuan E, Wang S, Zuo L, Ongur D, Hu W, Du F. The structural basis for interhemispheric functional connectivity: Evidence from individuals with agenesis of the corpus callosum. NEUROIMAGE-CLINICAL 2020; 28:102425. [PMID: 32979843 PMCID: PMC7519397 DOI: 10.1016/j.nicl.2020.102425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
AgCC showed impaired global structural, but intact functional network properties. AgCC showed increased intrahemispheric structural connectivity. AgCC showed markedly reduced interhemispheric homotopic FC. The VMHC was correlated with the number and quality of fibers crossing the CC. Brain areas with more fiber connections tended to build higher FC with each other.
Agenesis of the corpus callosum (AgCC) is a rare congenital malformation characterized by partial or complete absence of the corpus callosum (CC). The effects of AgCC on cerebral structural and functional networks are not clear. We aimed to utilize AgCC as a model to characterize the relationship between brain structure and function. Diffusion tensor imaging and resting-state fMRI data were collected from nine AgCC and ten healthy subjects. The interhemispheric functional connectivity (FC) was quantified using a voxel-mirrored-homotopic-connectivity (VMHC) method, and its correlation with the number (FN) and fractional anisotropy (FA) of the fibers crossing the CC was calculated. Graph-based network analyses of structural and functional topologic properties were performed. AgCC subjects showed markedly reduced VMHC compared to controls. VMHC was significantly correlated with the FN and FA of the fibers crossing the CC. Structural network analyses revealed impaired global properties, but intact local properties in AgCC compared to controls. Functional network analyses showed no significant difference in network properties between the groups. Finally, in both groups, brain areas with more fiber connections were more likely to build a positive FC with each other, while areas with decreased white matter connections were more likely to result in negative FC. Our observations demonstrate that interhemispheric FC is highly dependent on CC structure. Increased alternative intrahemispheric SC might be a compensatory mechanism in AgCC that helps to maintain normal global brain function. Our study provides insights into the underlying neurological pathophysiology of brain malformations, thereby helping to elucidate the structure–function relationship of normal human brain.
Collapse
Affiliation(s)
- Junliang Yuan
- McLean Imaging Center, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States; Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing 100191, China
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, 02478, United States; Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Elliot Kuan
- Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Shuangkun Wang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Long Zuo
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Fei Du
- McLean Imaging Center, McLean Hospital, 02478, United States; Psychotic Disorders Division, McLean Hospital, 02478, United States; Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|