1
|
Ji S, Kang J, Han C, Xu X, Chen M, Chen J, Chhetri JK, Pan J, Chan P. Potential role of APOE ɛ4 allele as a modifier for the association of BDNF Val66Met polymorphisms and cognitive impairment in community-dwelling older adults. Front Aging Neurosci 2024; 16:1330193. [PMID: 38374884 PMCID: PMC10876185 DOI: 10.3389/fnagi.2024.1330193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Objective To determine whether the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with cognitive impairment (CI) in community-dwelling Chinese older adults, and to investigate whether this relationship is modified by the Apolipoprotein E (APOE) ɛ4 allele. Methods The study is a secondary analysis of 703 participants aged ≥60 years randomly enrolled from the Beijing Longitudinal Study of Aging II prospective cohort. The education-adjusted Mini-Mental State Examination and the Clinical Dementia Rating Scale were used to measure the cognitive performance of the subjects. The main effects and interactions (additive and multiplicative) of the BDNF Met and the APOE ε4 alleles on CI were estimated by logistic regression models. Results In total, 84 out of 703 older adults aged ≥60 years old had CI. No significant difference was observed in the risk of CI between participants with the BDNF Met allele and that of subjects without the BDNF Met allele (p = 0.213; p = 0.164). Individuals carrying both the BDNF Met and APOE ε4 alleles had an almost 1.5-fold increased odds of CI compared with carriers of the BDNF Met allele but without the APOE ε4 allele. The additive association indicated a positive interaction of both BDNF Met and APOE ε4 alleles with wide CIs (p = 0.021; p = 0.018). Conclusion The results suggest that the APOE ε4 allele may be a potential modifier for the association of the BDNF Val66Met polymorphism with CI in community-dwelling older adults.
Collapse
Affiliation(s)
- Shaozhen Ji
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Kang
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chao Han
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xitong Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Meijie Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Chen
- Department of Geriatrics, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jing Pan
- Department of Neurology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Barha CK, Starkey SY, Hsiung GYR, Tam R, Liu-Ambrose T. Aerobic exercise improves executive functions in females, but not males, without the BDNF Val66Met polymorphism. Biol Sex Differ 2023; 14:16. [PMID: 37013586 PMCID: PMC10069071 DOI: 10.1186/s13293-023-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Aerobic exercise promotes cognitive function in older adults; however, variability exists in the degree of benefit. The brain-derived neurotropic factor (BDNF) Val66Met polymorphism and biological sex are biological factors that have been proposed as important modifiers of exercise efficacy. Therefore, we assessed whether the effect of aerobic exercise on executive functions was dependent on the BDNFval66met genotype and biological sex. METHODS We used data from a single-blind randomized controlled trial in older adults with subcortical ischemic vascular cognitive impairment (NCT01027858). Fifty-eight older adults were randomly assigned to either the 6 months, three times per week progressive aerobic training (AT) group or the usual care plus education control (CON) group. The secondary aim of the parent study included executive functions which were assessed with the Trail Making Test (B-A) and the Digit Symbol Substitution Test at baseline and trial completion at 6 months. RESULTS Analysis of covariance, controlling for baseline global cognition and baseline executive functions performance (Trail Making Test or Digit Symbol Substitution Test), tested the three-way interaction between experimental group (AT, CON), BDNFval66met genotype (Val/Val carrier, Met carrier), and biological sex (female, male). Significant three-way interactions were found for the Trail Making Test (F(1,48) = 4.412, p < 0.04) and Digit Symbol Substitution Test (F(1,47) = 10.833, p < 0.002). Posthoc analyses showed female Val/Val carriers benefited the most from 6 months of AT compared with CON for Trail Making Test and Digit Symbol Substitution Test performance. Compared with CON, AT did not improve Trail Making Test performance in male Val/Val carriers or Digit Symbol Substitution Test performance in female Met carriers. CONCLUSIONS These results suggest that future randomized controlled trials should take into consideration BDNF genotype and biological sex to better understand the beneficial effects of AT on cognitive function in vascular cognitive impairment to maximize the beneficial effects of exercise and help establish exercise as medicine for cognitive health.
Collapse
Affiliation(s)
- Cindy K Barha
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Samantha Y Starkey
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - G Y Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- Division of Neurology, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute and University of British Columbia Hospital Clinic for Alzheimer Disease and Related Disorders, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Neuroscience Lab, Department of Physical Therapy, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health C/O Liu-Ambrose Lab, 2215 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada.
- Centre for Hip Health and Mobility, Vancouver, Canada.
| |
Collapse
|
3
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
4
|
Xia H, Wang M, Li JQ, Tan CC, Cao XP, Tan L, Yu JT. The Influence of BDNF Val66Met Polymorphism on Cognition, Cerebrospinal Fluid, and Neuroimaging Markers in Non-Demented Elderly. J Alzheimers Dis 2019; 68:405-414. [PMID: 30775992 DOI: 10.3233/jad-180971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hui Xia
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Min Wang
- College of Nursing, Qingdao University, China
| | - Jie-Qiong Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
5
|
Pietzuch M, King AE, Ward DD, Vickers JC. The Influence of Genetic Factors and Cognitive Reserve on Structural and Functional Resting-State Brain Networks in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:30. [PMID: 30894813 PMCID: PMC6414800 DOI: 10.3389/fnagi.2019.00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI) offers significant insight into the complex organization of neural networks within the human brain. Using resting-state functional MRI data, topological maps can be created to visualize changes in brain activity, as well as to represent and assess the structural and functional connections between different brain regions. Crucially, Alzheimer's disease (AD) is associated with progressive loss in this connectivity, which is particularly evident within the default mode network. In this paper, we review the recent literature on how factors that are associated with risk of dementia may influence the organization of the brain network structures. In particular, we focus on cognitive reserve and the common genetic polymorphisms of APOE and BDNF Val66Met.
Collapse
Affiliation(s)
- Manuela Pietzuch
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David D. Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
6
|
Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Understanding disease progression and improving Alzheimer's disease clinical trials: Recent highlights from the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2018; 15:106-152. [PMID: 30321505 DOI: 10.1016/j.jalz.2018.08.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to validate biomarkers for Alzheimer's disease (AD) clinical trials. ADNI is a multisite, longitudinal, observational study that has collected many biomarkers since 2004. Recent publications highlight the multifactorial nature of late-onset AD. We discuss selected topics that provide insights into AD progression and outline how this knowledge may improve clinical trials. METHODS We used standard methods to identify nearly 600 publications using ADNI data from 2016 and 2017 (listed in Supplementary Material and searchable at http://adni.loni.usc.edu/news-publications/publications/). RESULTS (1) Data-driven AD progression models supported multifactorial interactions rather than a linear cascade of events. (2) β-Amyloid (Aβ) deposition occurred concurrently with functional connectivity changes within the default mode network in preclinical subjects and was followed by specific and progressive disconnection of functional and anatomical networks. (3) Changes in functional connectivity, volumetric measures, regional hypometabolism, and cognition were detectable at subthreshold levels of Aβ deposition. 4. Tau positron emission tomography imaging studies detailed a specific temporal and spatial pattern of tau pathology dependent on prior Aβ deposition, and related to subsequent cognitive decline. 5. Clustering studies using a wide range of modalities consistently identified a "typical AD" subgroup and a second subgroup characterized by executive impairment and widespread cortical atrophy in preclinical and prodromal subjects. 6. Vascular pathology burden may act through both Aβ dependent and independent mechanisms to exacerbate AD progression. 7. The APOE ε4 allele interacted with cerebrovascular disease to impede Aβ clearance mechanisms. 8. Genetic approaches identified novel genetic risk factors involving a wide range of processes, and demonstrated shared genetic risk for AD and vascular disorders, as well as the temporal and regional pathological associations of established AD risk alleles. 9. Knowledge of early pathological changes guided the development of novel prognostic biomarkers for preclinical subjects. 10. Placebo populations of randomized controlled clinical trials had highly variable trajectories of cognitive change, underscoring the importance of subject selection and monitoring. 11. Selection criteria based on Aβ positivity, hippocampal volume, baseline cognitive/functional measures, and APOE ε4 status in combination with improved cognitive outcome measures were projected to decrease clinical trial duration and cost. 12. Multiple concurrent therapies targeting vascular health and other AD pathology in addition to Aβ may be more effective than single therapies. DISCUSSION ADNI publications from 2016 and 2017 supported the idea of AD as a multifactorial disease and provided insights into the complexities of AD disease progression. These findings guided the development of novel biomarkers and suggested that subject selection on the basis of multiple factors may lower AD clinical trial costs and duration. The use of multiple concurrent therapies in these trials may prove more effective in reversing AD disease progression.
Collapse
Affiliation(s)
- Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Northern California Institute for Research and Education (NCIRE), Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Benussi L, Binetti G, Ghidoni R. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point? Front Neurosci 2017; 11:672. [PMID: 29249935 PMCID: PMC5717017 DOI: 10.3389/fnins.2017.00672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023] Open
Abstract
Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression.
Collapse
Affiliation(s)
- Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|