1
|
De Marco M, Wright LM, Valera Bermejo JM, Ferguson CE. APOE ε4 positivity predicts centrality of episodic memory nodes in patients with mild cognitive impairment: A cohort-based, graph theory-informed study of cognitive networks. Neuropsychologia 2024; 192:108741. [PMID: 38040087 DOI: 10.1016/j.neuropsychologia.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
As network neuroscience can capture the systemic impact of APOE variability at a neuroimaging level, this study investigated the network-based cognitive endophenotypes of ε4-carriers and non-carriers across the continuum between normal ageing and Alzheimer's dementia (AD). We hypothesised that the impact of APOE-ε4 on cognitive functioning can be reliably captured by the measurement of graph-theory centrality. Cognitive networks were calculated in 8118 controls, 3482 MCI patients and 4573 AD patients, recruited in the National Alzheimer's Coordinating Center (NACC) database. Nodal centrality was selected as the neurofunctional readout of interest. ε4-carrier-vs.-non-carrier differences were tested in two independent NACC sub-cohorts assessed with either Version 1 or Version 2 of the Uniform Data Set neuropsychological battery. A significant APOE-dependent effect emerged from the analysis of the Logical-Memory nodes in MCI patients in both sub-cohorts. While non-carriers showed equal centrality in immediate and delayed recall, the latter was significantly less central among carriers (v1: bootstrapped confidence interval 0.107-0.667, p < 0.001; v2: bootstrapped confidence interval 0.018-0.432, p < 0.001). This indicates that, in carriers, delayed recall was, overall, significantly more weakly correlated with the other cognitive scores. These findings were replicated in the sub-groups of sole amnestic-MCI patients (n = 2971), were independent of differences in network communities, clinical severity or other demographic factors. No effects were found in the other two diagnostic groups. APOE-ε4 influences nodal properties of cognitive networks when patients are clinically classified as MCI. This highlights the importance of characterising the impact of risk factors on the wider cognitive network via network-neuroscience methodologies.
Collapse
Affiliation(s)
- Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom.
| | - Laura M Wright
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Jose Manuel Valera Bermejo
- Institute of Psychiatry, Psychology & Neuroscience; Department of Neuroimaging; King's College London; London, United Kingdom.
| | - Cameron E Ferguson
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Zhang W, Zou Y, Zhao F, Yang Y, Mao N, Li Y, Huang G, Yao Z, Hu B. Brain Network Alterations in Rectal Cancer Survivors With Depression Tendency: Evaluation With Multimodal Magnetic Resonance Imaging. Front Neurol 2022; 13:791298. [PMID: 35847225 PMCID: PMC9277124 DOI: 10.3389/fneur.2022.791298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Surgery and chemotherapy may increase depression tendency in patients with rectal cancer (RC). Nevertheless, few comprehensive studies are conducted on alterations of brain network induced by depression tendency in patients with RC. Resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data were collected from 42 patients with RC with surgery and chemotherapy and 38 healthy controls (HCs). Functional network (FN) was constructed from extracting average time courses in brain regions, and structural network (SN) was established by deterministic tractography. Graph theoretical analysis was used to calculate network properties. Networks resilient of two networks were assessed. Clinical correlation analysis was explored between altered network parameters and Hamilton depression scale (HAMD) score. This study revealed impaired FN and SN at both local and global levels and changed nodal efficiency and abnormal small-worldness property in patients with RC. On the whole, all FNs are more robust than SN. Moreover, compared with HC, patients with RC show less robustness in both networks. Regions with decreased nodal efficiency were associated with HAMD score. These cognitive dysfunctions are mainly attributable to depression-related brain functional and structural network alterations. Brain network reorganization is to prevent patients with RC from more serious depression after surgery and chemotherapy.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ying Zou
- Department of Information Engineering, Yantai Vocational College, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yongqing Yang
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
- Big data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuan Li
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
- *Correspondence: Yuan Li
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
- Gang Huang
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Zhijun Yao
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Bin Hu
| |
Collapse
|
3
|
Hernandez C, Shukla S. Liposome based drug delivery as a potential treatment option for Alzheimer's disease. Neural Regen Res 2022; 17:1190-1198. [PMID: 34782553 PMCID: PMC8643057 DOI: 10.4103/1673-5374.327328] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions. Alzheimer's disease is associated with dementia and a progressive decline in memory, thinking, and social skills, eventually leading to a point that the individual can no longer perform daily activities independently. Currently available drugs on the market temporarily alleviate the symptoms, however, they are not successful in slowing down the progression of Alzheimer's disease. Treatment and cures have been constricted due to the difficulty of drug delivery to the blood-brain barrier. Several studies have led to identification of vesicles to transport the necessary drugs through the blood-brain barrier that would typically not achieve the targeted area through systemic delivered medications. Recently, liposomes have emerged as a viable drug delivery agent to transport drugs that are not able to cross the blood-brain barrier. Liposomes are being used as a component of nanoparticle drug delivery; due to their biocompatible nature; and possessing the capability to carry both lipophilic and hydrophilic therapeutic agents across the blood brain barrier into the brain cells. Studies indicate the importance of liposomal based drug delivery in treatment of neurodegenerative disorders. The idea is to encapsulate the drugs inside the properly engineered liposome to generate a response of treatment. Liposomes are engineered to target specific diseased moieties and also several surface modifications of liposomes are under research to create a clinical path to the management of Alzheimer's disease. This review deals with Alzheimer's disease and emphasize on challenges associated with drug delivery to the brain, and how liposomal drug delivery can play an important role as a drug delivery method for the treatment of Alzheimer's disease. This review also sheds some light on variation of liposomes. Additionally, it emphasizes on the liposomal formulations which are currently researched or used for treatment of Alzheimer's disease and also discusses the future prospect of liposomal based drug delivery in Alzheimer's disease.
Collapse
Affiliation(s)
- Carely Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| | - Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
| |
Collapse
|