1
|
Khani M, Akçimen F, Grant SM, Akerman SC, Lee PS, Faghri F, Leonard H, Kim JJ, Makarious MB, Koretsky MJ, Rothstein JD, Blauwendraat C, Nalls MA, Singleton A, Bandres-Ciga S. Biobank-scale characterization of Alzheimer's disease and related dementias identifies potential disease-causing variants, risk factors, and genetic modifiers across diverse ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.03.24313587. [PMID: 39606324 PMCID: PMC11601747 DOI: 10.1101/2024.11.03.24313587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease and related dementias (AD/ADRDs) pose a significant global public health challenge, underscored by the intricate interplay of genetic and environmental factors that differ across ancestries. To effectively implement equitable, personalized therapeutic interventions on a global scale, it is essential to identify disease-causing mutations and genetic risk and resilience factors across diverse ancestral backgrounds. Exploring genetic-phenotypic correlations across the globe enhances the generalizability of research findings, contributing to a more inclusive and universal understanding of disease. This study leveraged biobank-scale data to conduct the largest multi-ancestry whole-genome sequencing characterization of AD/ADRDs. We aimed to build a valuable catalog of potential disease-causing, genetic risk and resilience variants impacting the etiology of these conditions. We thoroughly characterized genetic variants from key genes associated with AD/ADRDs across 11 genetic ancestries, utilizing data from All of Us, UK Biobank, 100,000 Genomes Project, Alzheimer's Disease Sequencing Project, and the Accelerating Medicines Partnership in Parkinson's Disease, including a total of 25,001 cases and 93,542 controls. We prioritized 116 variants possibly linked to disease, including 18 known pathogenic and 98 novel variants. We detected previously described disease-causing variants among controls, leading us to question their pathogenicity. Notably, we showed a higher frequency of APOE ε4/ε4 carriers among individuals of African and African Admixed ancestry compared to other ancestries, confirming ancestry-driven modulation of APOE-associated AD/ADRDs. A thorough assessment of APOE revealed a disease-modifying effect conferred by the TOMM40:rs11556505, APOE:rs449647, 19q13.31:rs10423769, NOCT:rs13116075, CASS4:rs6024870, and LRRC37A:rs2732703 variants among APOE ε4 carriers across different ancestries. In summary, we compiled the most extensive catalog of established and novel genetic variants in known genes increasing risk or conferring resistance to AD/ADRDs across diverse ancestries, providing clinical insights into their genetic-phenotypic correlations. The findings from this investigation hold significant implications for potential clinical trials and therapeutic interventions on a global scale. Finally, we present an accessible and user-friendly platform for the AD/ADRDs research community to help inform and support basic, translational, and clinical research on these debilitating conditions (https://niacard.shinyapps.io/MAMBARD_browser/).
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Spencer M. Grant
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - S. Can Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Suhwan Lee
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Data Tecnica LLC, Washington, DC 20037, USA
| | - Hampton Leonard
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Data Tecnica LLC, Washington, DC 20037, USA
| | - Jonggeol Jeffrey Kim
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary B. Makarious
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Data Tecnica LLC, Washington, DC 20037, USA
| | - Mathew J. Koretsky
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Data Tecnica LLC, Washington, DC 20037, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike A. Nalls
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Data Tecnica LLC, Washington, DC 20037, USA
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Cheng F, Wang F, Tang J, Zhou Y, Fu Z, Zhang P, Haines JL, Leverenz JB, Gan L, Hu J, Rosen-Zvi M, Pieper AA, Cummings J. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer's disease. Cell Rep Med 2024; 5:101379. [PMID: 38382465 PMCID: PMC10897520 DOI: 10.1016/j.xcrm.2023.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The high failure rate of clinical trials in Alzheimer's disease (AD) and AD-related dementia (ADRD) is due to a lack of understanding of the pathophysiology of disease, and this deficit may be addressed by applying artificial intelligence (AI) to "big data" to rapidly and effectively expand therapeutic development efforts. Recent accelerations in computing power and availability of big data, including electronic health records and multi-omics profiles, have converged to provide opportunities for scientific discovery and treatment development. Here, we review the potential utility of applying AI approaches to big data for discovery of disease-modifying medicines for AD/ADRD. We illustrate how AI tools can be applied to the AD/ADRD drug development pipeline through collaborative efforts among neurologists, gerontologists, geneticists, pharmacologists, medicinal chemists, and computational scientists. AI and open data science expedite drug discovery and development of disease-modifying therapeutics for AD/ADRD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC H3T 2A7, Canada
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhimin Fu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46037, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, and Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianying Hu
- IBM Research, Yorktown Heights, New York, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research Labs, Haifa 3498825, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| |
Collapse
|