1
|
Li Q, Wang L, Wang Y, Zhao L. Transcutaneous electrical acupoint stimulation for immunologic function after surgery in patients with gastrointestinal tumor: a meta-analysis. Biotechnol Genet Eng Rev 2024; 40:1001-1023. [PMID: 36994751 DOI: 10.1080/02648725.2023.2191090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023]
Abstract
There is no consensus on whether transcutaneous acupoint electrical stimulation can be used to improve the immune function of postoperative patients with gastrointestinal tumors. This meta-analysis aims to evaluate the effects of transcutaneous electrical acupoint stimulation (TEAS) on postoperative immune function of patients with gastrointestinal tumor and provide evidence-based basis for clinical evaluation. The method used in this study is to systematically searched English databases including PubMed, Cochrane Library (CENTRAL), Excerpta Medica Database (EMbase), Web of Science and Chinese databases including Chinese National Knowledge Infrastructure (CNKI), Wanfang Data, VIP database and China Biomedical Literature Database (SinoMed). Relevant registration platform named Chinese Clinical Trial Registry (ChiCTR) was also searched. Manual search and document tracking are also performed. The aforementioned databases were retrieved for transcutaneous electrical acupoint stimulation for immunologic function after surgery in patients with gastrointestinal tumor randomized controlled trials (RCTs) from inception to 1 November 2022. Meta-analysis was conducted by RevMan5.4.1 software, and the evidence quality was evaluated using Cochrane risk bias evaluation form. In this study, a total of 18 trials with 1618 participants were analyzed. Only two studies were shown to be low risk. The results showed that there were significant differences in cellular immune and inflammatory factors and receptors, such as CD3+, CD4+, CD4+/CD8+, NK, IL-6, TNF-α, sIL-2 R, IL-2 and CRP, had significant effects (P < 0.05) after TEAS intervention on gastrointestinal tumor; however, CD8+ (P = 0.07) and IL-10 (P = 0.26) did not. Judging from the current evidence, TEAS was found to improve the immune function of patients with gastrointestinal tumors after surgery and reduce the level of inflammatory response, worthy of clinical promotion and use.
Collapse
Affiliation(s)
- Qiuyue Li
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linjia Wang
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuhan Wang
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- Acupuncture and massage college, Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Tian SX, Xu T, Shi RY, Cai YQ, Wu MH, Zhen SJ, Wang W, Zhou Y, Du JY, Fang JF, Shao XM, Liu BY, Jiang YL, He XF, Fang JQ, Liang Y. Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor. Purinergic Signal 2023; 19:13-27. [PMID: 35478452 PMCID: PMC9984641 DOI: 10.1007/s11302-022-09861-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.
Collapse
Affiliation(s)
- Shu-Xin Tian
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ting Xu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ren-Yi Shi
- Department of Acupuncture and Moxibustion, Sanya Traditional Chinese Medicine Hospital, Sanya, 572000, China
| | - Yang-Qian Cai
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Ming-Hui Wu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Si-Jia Zhen
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - You Zhou
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Bo-Yi Liu
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China.,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, China. .,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
3
|
Wang N, Zhao L, Zhang D, Kong F. Research progress on the immunomodulatory mechanism of acupuncture in tumor immune microenvironment. Front Immunol 2023; 14:1092402. [PMID: 36865562 PMCID: PMC9971227 DOI: 10.3389/fimmu.2023.1092402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
With the constantly deeper understanding of individualized precision therapy, immunotherapy is increasingly developed and personalized. The tumor immune microenvironment (TIME) mainly consists of infiltrating immune cells, neuroendocrine cells, extracellular matrix, lymphatic vessel network, etc. It is the internal environment basis for the survival and development of tumor cells. As a characteristic treatment of traditional Chinese medicine, acupuncture has shown potentially beneficial impacts on TIME. The currently available information demonstrated that acupuncture could regulate the state of immunosuppression through a range of pathways. An effective way to understand the mechanisms of action of acupuncture was to analyze the response following treatment of the immune system. This research reviewed the mechanisms of acupuncture regulating tumor immunological status based on innate and adaptive immunity.
Collapse
Affiliation(s)
- Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Electroacupuncture Suppresses CCI-Induced Neuropathic Pain through GABAA Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4505934. [PMID: 36248405 PMCID: PMC9568313 DOI: 10.1155/2022/4505934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Neuropathic pain remains a chronic and intractable pain. Recent studies have shown a close relationship between gamma-aminobutyric acid A (GABAA) receptor and neuropathic pain. Spinal cord GABAA receptors are key modulators of pain processing. Electroacupuncture (EA) is currently used worldwide to relieve pain. The immunomodulatory effect of EA in animals has been proposed in previous studies. However, it remains unclear how EA contributes to alleviating neuropathic pain. In this study, the chronic constriction injury (CCI) rat model was used to explore the relationship between GABAA receptor and neuropathic pain. We also investigated whether EA treatment could ameliorate pain hypersensitivity by modulating the GABAA receptor. To determine the function of EA in neurological diseases, in this study, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were assessed to determine the threshold of pain. In addition, we used Western blot, immunofluorescence, and real-time quantitative PCR to confirm whether EA treatment relieves pain hypersensitivity by regulating GABAA receptors. The morphology of synapse was examined using an electron microscope. In the present study, EA relieved mechanical allodynia and thermal hyperalgesia. EA also inhibited microglial activation in the spinal cord, accompanied by increased levels of GABAARα2, GABAARα3, and GABAARγ2 subunits. However, the analgesic effect of EA was attenuated by treatment with the GABAA receptor antagonist bicuculine. Overall, the present results indicate that microglia and GABAA receptor might participate in EA analgesia. These results contribute to our understanding of the impact of EA on rats after sciatic nerve compression, providing a theoretical basis for the clinical application of EA analgesia.
Collapse
|
5
|
Yang QQ, Li HN, Xia YT, Tian X, Feng F, Yang J, Xu YL, Guo J, Li XQ, Wang JY, Zeng XY. Red Nucleus Interleukin-6 Evokes Tactile Allodynia in Male Rats Through Modulating Spinal Pro-inflammatory and Anti-inflammatory Cytokines. Front Mol Neurosci 2022; 15:820664. [PMID: 35465093 PMCID: PMC9026175 DOI: 10.3389/fnmol.2022.820664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Our previous studies have clarified that red nucleus (RN) interleukin (IL)-6 is involved in the maintenance of neuropathic pain and produces a facilitatory effect by activating JAK2/STAT3 and ERK pathways. In this study, we further explored the immune molecular mechanisms of rubral IL-6-mediated descending facilitation at the spinal cord level. IL-6-evoked tactile allodynia was established by injecting recombinant IL-6 into the unilateral RN of naive male rats. Following intrarubral administration of IL-6, obvious tactile allodynia was evoked in the contralateral hindpaw of rats. Meanwhile, the expressions of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were elevated in the contralateral spinal dorsal horn (L4–L6), blocking spinal TNF-α, IL-1β, or IL-6 with neutralizing antibodies relieved IL-6-evoked tactile allodynia. Conversely, the levels of anti-inflammatory cytokines transforming growth factor-β (TGF-β) and IL-10 were reduced in the contralateral spinal dorsal horn (L4–L6), an intrathecal supplement of exogenous TGF-β, or IL-10 attenuated IL-6-evoked tactile allodynia. Further studies demonstrated that intrarubral pretreatment with JAK2/STAT3 inhibitor AG490 suppressed the elevations of spinal TNF-α, IL-1β, and IL-6 and promoted the expressions of TGF-β and IL-10 in IL-6-evoked tactile allodynia rats. However, intrarubral pretreatment with ERK inhibitor PD98059 only restrained the increase in spinal TNF-α and enhanced the expression of spinal IL-10. These findings imply that rubral IL-6 plays descending facilitation and produces algesic effect through upregulating the expressions of spinal pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 and downregulating the expressions of spinal anti-inflammatory cytokines TGF-β and IL-10 by activating JAK2/STAT3 and/or ERK pathways, which provides potential therapeutic targets for the treatment of pathological pain.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu-Tong Xia
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jian Yang
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Juan Guo
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiao-Qi Li
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Jun-Yang Wang,
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xiao-Yan Zeng,
| |
Collapse
|
6
|
Jiao L, He X, Zhang J, Liu Y, Luo Y, Wei H. Effects of Acupuncture on Cancer Pain in Animal Intervention Studies: A Systematic Review and Quality Assessment. Integr Cancer Ther 2022; 21:15347354221123788. [PMID: 36314416 PMCID: PMC9629563 DOI: 10.1177/15347354221123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Preclinical studies often provide the evidence base for clinical studies. However, the design and reporting of preclinical trial results are inadequate, resulting in poor reproducibility and clinical translatability. We aimed to systematically evaluate the methodology and reporting quality of animal studies of acupuncture for cancer pain. METHODS About 7 databases were searched for animal research articles on acupuncture for cancer pain from the beginning of the database to January 31, 2022. ARRIVE guidelines, STRICTA, and SYRCLE risk of bias tools were used to assess the reporting quality and risk of bias of the selected studies. RESULTS A total of 18 studies were evaluated. Of the 22 items on the SYRCLE tool, only 6 items had a positive reporting rate of more than 50%. Of the 39 items in the ARRIVE guidelines, 14 were rated excellent, and the least frequently reported checklist items were 7. Out of the 17 STRICTA checklist items analyzed, 10 were considered appropriately reported in more than 80% of the studies, while 4 were correctly reported in less than 20%. CONCLUSIONS Some crucial points in the design, implementation, and reporting of the experiments included in the study were not well developed, which could significantly affect the clarity, reproducibility, and translatability of the experiments. There is a need to fully implement scientific tool guidelines for future experimental studies in order to improve the quality of preclinical studies and facilitate effective translation of their results to the clinic.
Collapse
Affiliation(s)
- Liangbo Jiao
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xiaoxia He
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Jihong Zhang
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Yali Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Hu Wei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
7
|
Fang J, Wang S, Zhou J, Shao X, Sun H, Liang Y, He X, Jiang Y, Liu B, Jin X, Fang J, Du J. Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion. Front Neurosci 2021; 15:685715. [PMID: 34354561 PMCID: PMC8329384 DOI: 10.3389/fnins.2021.685715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4–L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε–TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jie Zhou
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Wang W, Zhou Y, Cai Y, Wang S, Shao F, Du J, Fang J, Liu J, Shao X, Liu B, Fang J, Liang Y. Phosphoproteomic Profiling of Rat's Dorsal Root Ganglia Reveals mTOR as a Potential Target in Bone Cancer Pain and Electro-Acupuncture's Analgesia. Front Pharmacol 2021; 12:593043. [PMID: 33995007 PMCID: PMC8117331 DOI: 10.3389/fphar.2021.593043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/08/2021] [Indexed: 01/18/2023] Open
Abstract
Bone cancer pain (BCP) is a clinical refractory mixed pain involving neuropathic and inflammatory pain, with the underlying mechanisms remaining largely unknown. Electro-acupuncture (EA) can partly alleviate BCP according to previous research. We aim to explore the proteins and major pathways involved in BCP and EA treatment through phosphoproteomic profiling. BCP rat model was built by tibial inoculation of MRMT-1 mammary gland carcinoma cells. Mechanical hyperalgesia determined by paw withdrawal thresholds (PWTs) and bone destruction manifested on the radiographs confirmed the success of modeling, which were attenuated by EA treatment. The differentially expressed phosphorylated proteins (DEPs) co-regulated by BCP modeling and EA treatment in rat dorsal root ganglions (DRGs) were analyzed through PEX100 Protein microarray. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEPs were significantly enriched in mammalian target of rapamycin (mTOR) signaling pathway. The phosphorylations of mTOR at Ser2448 and Thr2446 were increased in BCP and downregulated by EA. In addition, the phosphorylation of S6K and Akt, markers of the mTOR complex, were also increased in BCP and downregulated by EA. Inhibition of mTOR signaling alleviated the PWTs of BCP rats, while the mTOR agonist impaired the analgesic effect of EA. Thus, our study provided a landscape of protein phosphorylation changes in DRGs of EA-treated BCP rats and revealed that mTOR signaling can be potentially targeted to alleviate BCP by EA treatment.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Quzhou Municipal Hospital of Traditional Chinese Medicine, Quzhou, China
| | - You Zhou
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangqian Cai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sisi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangbing Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinggen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Long H, Zheng H, Ai L, Osman K, Liu Z. Down-Regulation of NOX4 Expression in Dorsal Horn of Spinal Cord Could Alleviate Cancer-Induced Bone Pain in Rats by Reducing Oxidative Stress Response. Cancer Manag Res 2020; 12:10929-10938. [PMID: 33154672 PMCID: PMC7608490 DOI: 10.2147/cmar.s263177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Cancer-induced bone pain (CIBP) is very common in patients with advanced cancer. Recent studies have shown that reactive oxygen species (ROS) can sense and regulate pain response process through spinal cord mechanism, and play a role in CIBP. NADPH oxidase (NOX) is a group of protease complexes that produce ROS. In the current study, we investigated the expression of NOX4 in the spinal dorsal horn of rats with CIBP and its related role and molecular mechanism. Materials and Methods A rat CIBP model was established by injecting Walker-256 cells into the tibia medullary cavity, and the expression of NOX4 in spinal dorsal horn was down-regulated by injecting lentivirus into spinal cord. RT-PCR, Western blot and immunofluorescence staining were used to detect the expression of NOX4 in CIBP rats, cell localization and its effect on CIBP rats, and the effect of down-regulating the expression of NOX4 on the expression of H2O2, nitric oxide synthase nNO, antioxidant enzyme SOD, and the activity of neuro-receptor in spinal dorsal horn of rats. Results In rats with CIBP, the expression of NOX4 was significantly increased, and immunofluorescence showed that NOX4 was mainly expressed in microglia in the dorsal horn of spinal cord. Down-regulating the expression of NOX4 in rats can reduce the level of H2O2 and nNO in dorsal horn tissue, and increase the expression of SOD to reduce the oxidative stress response. At the same time, down-regulating NOX4 can reduce the sensitivity of spinal cord and relieve the pain of bone cancer by inhibiting the expression of NMDAR and GABAA-γ2 in dorsal horn tissue. Conclusion NOX4 is a promising therapeutic target in CIBP, and down-regulation of NOX4 expression can alleviate CIBP in rats by reducing oxidative stress and weakening spinal cord sensitization.
Collapse
Affiliation(s)
- Hao Long
- Department of Pain Management, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Hui Zheng
- Orthopedics Department, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Long Ai
- Department of Pain Management, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Kamil Osman
- Department of Pain Management, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhigang Liu
- Department of Pain Management, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
10
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
11
|
Acupuncture for Cancer-Induced Bone Pain in Animal Models: A Systemic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5606823. [PMID: 32802130 PMCID: PMC7414378 DOI: 10.1155/2020/5606823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 12/09/2022]
Abstract
Background Cancer-induced bone pain (CIBP) is a highly prevalent symptom, which afflicts vast majority of patients who suffer from cancer. The current treatment options failed to achieve satisfactory effect and the side effects were prominent. Recent randomized controlled trials (RCTs) of animal demonstrate the benefit of acupuncture for CIBP. We sought to determine if the pooled data from available RCTs supports the use of acupuncture for CIBP. Methods A literature search for randomized controlled trials was conducted in six electronic databases from inception to May 31, 2019. Meta-analysis was performed with Review Manager 5.3 software; the publication bias was assessed by Stata 12.0 software. We used random effects model for pooling data because heterogeneity is absolute among studies to some extent. Results Twenty-four trials were included in the review, of which 12 trials provided detailed data for meta-analyses. Preliminary evidence indicates that compared to wait list/sham group, acupuncture was effective on increasing paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). Compared to medicine, acupuncture was less effective on PWT, but as effective as medicine on PWL. Acupuncture can reinforce medicine's effect on PWT and PWL. Compared to the control group, acupuncture was superior to increase body weight (BW), decrease spinal cord glial fibrillary acidic protein (GFAP), and interleukin-1β (IL-1β). Furthermore, some studies showed acupuncture delay or partially reverse morphine tolerance. Three studies found acupuncture has no effect on PWT, but 2 of them found acupuncture could enhance small dose of Celebrex's effect on CIBP. Conclusions Acupuncture was superior to wait list/sham acupuncture on increasing PWT and has no less effect on increasing PWL compared to medicine; acupuncture improved the efficacy of drugs, increased the CIBP animals' body weight, and decreased their spinal cord GFAP and IL-1β. High-quality studies are necessary to confirm the results.
Collapse
|
12
|
Zhang C, Xia C, Zhang X, Li W, Miao X, Zhou Q. Wrist-ankle acupuncture attenuates cancer-induced bone pain by regulating descending pain-modulating system in a rat model. Chin Med 2020; 15:13. [PMID: 32042305 PMCID: PMC7001307 DOI: 10.1186/s13020-020-0289-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/09/2020] [Indexed: 01/26/2023] Open
Abstract
Background Cancer-induced bone pain (CIBP) presents a multiple-mechanism of chronic pain involving both inflammatory and neuropathic pain, and its pathogenesis is closely related to endogenous descending system of pain control. However, the action mechanism underlying the effects of wrist–ankle acupuncture (WAA) versus electroacupuncture (EA) on CIBP remains unknown. Methods Thirty-two Wistar rats were divided into sham, CIBP, EA-treated and WAA-treated groups. CIBP was induced in rats of the latter three groups. Time courses of weight and mechanical hyperalgesia threshold (MHT) were evaluated. After 6 days of EA or WAA treatment, the expressions of 5-hydroxytryotamine type 3A receptor (5-HT3AR) and μ-opioid receptor (MOR) in rostral ventromedial medulla (RVM) and/or spinal cord, as well as the levels of 5-HT, β-endorphin, endomorphin-1 and endomorphin-2 in RVM and spinal cord, were detected. Results Injection of cancer cells caused decreased MHT, which was attenuated by EA or WAA (P < 0.05). WAA had a quicker analgesic effect than EA (P < 0.05). No significant difference of MOR in RVM was found among the four groups. EA or WAA counteracted the cancer-driven upregulation of 5-HT3AR and downregulation of MOR in spinal cord (P < 0.05), and upregulation of 5-HT and downregulation of endomorphin-1 in both RVM and spinal cord (P < 0.05). β-endorphin and endomorphin-2 in RVM and spinal cord decreased in CIBP group compared with sham group (P < 0.05), but EA or WAA showed no significant effect on them, although a tendency of increasing effect was observed. Conclusion WAA, similar to EA, alleviated mechanical hyperalgesia in CIBP rats by suppressing the expressions of 5-HT and 5-HT3AR, and increasing the expressions of MOR and endomorphin-1 in RVM-spinal cord pathway of the descending pain-modulating system. However, WAA produced a quicker analgesic effect than EA, the mechanisms of which need further investigation.
Collapse
Affiliation(s)
- Chunpeng Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Chen Xia
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Xiaowen Zhang
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Weimin Li
- 2Laboratory of Neuronal Network and Systems Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xuerong Miao
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200433 People's Republic of China
| | - Qinghui Zhou
- School of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433 People's Republic of China
| |
Collapse
|
13
|
Ma Y, Guo H, Bai F, Zhang M, Yang L, Deng J, Xiong L. A rat model of knee osteoarthritis suitable for electroacupuncture study. Exp Anim 2018; 67:271-280. [PMID: 29311503 PMCID: PMC5955758 DOI: 10.1538/expanim.17-0142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acupuncture is widely used for knee osteoarthritis (KOA) treatment in clinical practice. In the present study, we aimed to set a standard KOA animal model for electroacupuncture (EA) study and provide an acupuncture recipe for further KOA studies. Rats intra-articularly administered monosodium iodoacetate (MIA, 0.3, 1 or 3 mg respectively, n=12 each) were evaluated for pain-like behavior: paw withdrawal mechanical threshold, weight bearing deficit, and joint pathological changes (OARSI score) until 28 days after injury. Then by using the suitable dose (1 mg MIA), therapeutic effects of EA treatment (bilateral ST36 and ST35 acupoints, 2/10 Hz, 30 min/d, 6d/w, 2w) were evaluated in 3 groups (n=16 each): Early-on EA, Mid-term EA and Delayed EA, in which EA was started on day 1, day 7 or day 14 after MIA injection. Both 1 mg and 3 mg MIA induced significant joint damage and persistent pain behavior. But animals accepted 3 mg MIA rapidly developed cartilage and bone damage within 14 days. Early-on EA treatment provided significant pain relief and joint structure preservation in KOA rats. Mid-term EA treatment only reduced pain, while delayed EA treatment resulted in no effects in both aspects. 1 mg of MIA produces steady pain behavior and progressive joint damage, which was suitable for EA treatment evaluation. Early-on EA treatment provided both joint protection and pain reduction, while Mid-term EA could only be used for studying EA-induced analgesia in KOA.
Collapse
Affiliation(s)
- Yongyuan Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| | - Fuhai Bai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| | - Ming Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China.,General Hospital of Chengdu Military Region of Chinese PLA, the 270th Tianhui Road, Chengdu, 610083, Sichuan, P.R. China
| | - Liu Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University. 127th West Changle Road, Xi'an, 710032, Shaanxi, P.R. China
| |
Collapse
|