1
|
Pyrshev K, Stavniichuk A, Tomilin VN, Khayyat NH, Ren G, Kordysh M, Zaika O, Mamenko M, Pochynyuk O. TRPV4 functional status in cystic cells regulates cystogenesis in autosomal recessive polycystic kidney disease during variations in dietary potassium. Physiol Rep 2023; 11:e15641. [PMID: 36946001 PMCID: PMC10031299 DOI: 10.14814/phy2.15641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Mechanosensitive TRPV4 channel plays a dominant role in maintaining [Ca2+ ]i homeostasis and flow-sensitive [Ca2+ ]i signaling in the renal tubule. Polycystic kidney disease (PKD) manifests as progressive cyst growth due to cAMP-dependent fluid secretion along with deficient mechanosensitivity and impaired TRPV4 activity. Here, we tested how regulation of renal TRPV4 function by dietary K+ intake modulates the rate of cystogenesis and mechanosensitive [Ca2+ ]i signaling in cystic cells of PCK453 rats, a homologous model of human autosomal recessive PKD (ARPKD). One month treatment with both high KCl (5% K+ ) and KB/C (5% K+ with bicarbonate/citrate) diets significantly increased TRPV4 levels when compared to control (0.9% K+ ). High KCl diet caused an increased TRPV4-dependent Ca2+ influx, and partial restoration of mechanosensitivity in freshly isolated monolayers of cystic cells. Unexpectedly, high KB/C diet induced an opposite effect by reducing TRPV4 activity and worsening [Ca2+ ]i homeostasis. Importantly, high KCl diet decreased cAMP, whereas high KB/C diet further increased cAMP levels in cystic cells (assessed as AQP2 distribution). At the systemic level, high KCl diet fed PCK453 rats had significantly lower kidney-to-bodyweight ratio and reduced cystic area. These beneficial effects were negated by a concomitant administration of an orally active TRPV4 antagonist, GSK2193874, resulting in greater kidney weight, accelerated cystogenesis, and augmented renal injury. High KB/C diet also exacerbated renal manifestations of ARPKD, consistent with deficient TRPV4 activity in cystic cells. Overall, we demonstrate that TRPV4 channel activity negatively regulates cAMP levels in cystic cells thus attenuating (high activity) or accelerating (low activity) ARPKD progression.
Collapse
Affiliation(s)
- Kyrylo Pyrshev
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Anna Stavniichuk
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Viktor N. Tomilin
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Guohui Ren
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mariya Kordysh
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Oleg Zaika
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mykola Mamenko
- Department of PhysiologyAugusta UniversityAugustaGeorgiaUSA
| | - Oleh Pochynyuk
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
2
|
Torres JA, Rezaei M, Broderick C, Lin L, Wang X, Hoppe B, Cowley BD, Savica V, Torres VE, Khan S, Holmes RP, Mrug M, Weimbs T. Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease. J Clin Invest 2019; 129:4506-4522. [PMID: 31361604 PMCID: PMC6763267 DOI: 10.1172/jci128503] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of "flushing out" crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.
Collapse
Affiliation(s)
- Jacob A. Torres
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Mina Rezaei
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Caroline Broderick
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Louis Lin
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| | - Xiaofang Wang
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Bernd Hoppe
- University Children’s Hospital Bonn, Division of Pediatric Nephrology, Bonn, Germany
| | - Benjamin D. Cowley
- University of Oklahoma Health Sciences Center, Department of Medicine, Section of Nephrology, Oklahoma City, Oklahoma, USA
| | - Vincenzo Savica
- University of Messina, Department of Clinical and Experimental Medicine, Messina, Italy
| | - Vicente E. Torres
- Mayo Clinic College of Medicine, Division of Nephrology and Hypertension, Rochester, Minnesota, USA
| | - Saeed Khan
- University of Florida, Department of Pathology, Gainesville, Florida, USA
| | | | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Thomas Weimbs
- University of California Santa Barbara, Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, Santa Barbara, California, USA
| |
Collapse
|
3
|
Reichardt W, Romaker D, Becker A, Buechert M, Walz G, von Elverfeldt D. Monitoring kidney and renal cyst volumes applying MR approaches on a rapamycin treated mouse model of ADPKD. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 22:143-9. [PMID: 19107537 DOI: 10.1007/s10334-008-0158-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 01/10/2023]
Abstract
OBJECT The aim of our study was to determine total cystic volume in a mouse model of PKD using MR imaging to monitor therapeutic effects in vivo. MATERIALS AND METHODS We imaged eight female pcy-mice in two groups: four belonged to an untreated control group and four were treated with the anticystic agent rapamycin, which has proven to be effective in reducing cystogenesis in animal models. The mice were imaged using a 9.4 Tesla animal scanner. MRI measurements were taken at six time points during the therapy. Total renal volumes and total cyst volumes were calculated using a thresholding approach. RESULTS During the course of the treatment, the total cyst volume increased significantly faster than the total renal volume in the untreated group, indicating that growth of the total renal volume in the untreated group was primarily due to the growth of the cysts, rather than the parenchyma. The measured total renal volume in the control (placebo) group was significantly higher than the volume in the treated group. CONCLUSION Using MRI, we were able to monitor the cystic volume in a mouse model of PKD to assess the therapeutic effect of anticystic treatment.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Department of Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Personalhaus 4, Hugstetter Strasse 55, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|