1
|
Webberley TS, Masetti G, Bevan RJ, Kerry-Smith J, Jack AA, Michael DR, Thomas S, Glymenaki M, Li J, McDonald JAK, John D, Morgan JE, Marchesi JR, Good MA, Plummer SF, Hughes TR. The Impact of Probiotic Supplementation on Cognitive, Pathological and Metabolic Markers in a Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci 2022; 16:843105. [PMID: 35685773 PMCID: PMC9172594 DOI: 10.3389/fnins.2022.843105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Brain degenerative disorders such as Alzheimer’s disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.
Collapse
Affiliation(s)
- Thomas S Webberley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cultech Ltd., Port Talbot, United Kingdom
| | | | - Ryan J Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | - Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jia Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Julie A K McDonald
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark A Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Xin J, Yan S, Hong X, Zhang H, Zha J. Environmentally relevant concentrations of clozapine induced lipotoxicity and gut microbiota dysbiosis in Chinese rare minnow (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117298. [PMID: 33964688 DOI: 10.1016/j.envpol.2021.117298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Clozapine (CLZ) is a neuroactive pharmaceutical that is frequently detected in aquatic environments. Although the cardiotoxicity, developmental toxicity, and neurotoxicity of CLZ in aquatic non-target organisms have been reported, its lipotoxicity and underlying mechanism are unknown. Therefore, in this study, 2-month-old Chinese rare minnows were exposed to 0, 0.1, 1, and 10 μg/L CLZ for 90 days. Overt dyslipidemia was observed after CLZ exposure, whereas the body weights of females significantly increased after CLZ exposure (p < 0.05). In addition, obvious hepatocyte vacuolization and hepatic lipid droplet accumulation were observed at all treatment groups (p < 0.05). The activities of sterol regulatory element binding proteins 1 (SREBP1) and fatty acid synthase (FAS) were significantly upregulated at the 1 and 10 μg/L CLZ treatment groups (p < 0.05). Moreover, evident cell boundary disintegration of the intestinal villi and increasing mucus secretion were observed at all treatment groups (p < 0.05). Furthermore, the diversity of the gut microbiota increased, whereas the relative abundances of Proteobacteria, Firmicutes and Bacteroidetes significantly increased after CLZ exposure (p < 0.05). Furthermore, significantly increased bacterial secondary bile acid biosynthesis activity in Chinese rare minnows was observed after 1 μg/L CLZ exposure (p < 0.05). Therefore, our findings confirmed that CLZ induced lipotoxicity by stimulating SREBP1 and affecting the bacterial secondary bile acid biosynthesis activity in Chinese rare minnows.
Collapse
Affiliation(s)
- Jiajing Xin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
4
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Hao S, Xu R, Li D, Zhu Z, Wang T, Liu K. Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats. Cell Biochem Biophys 2015; 72:741-9. [DOI: 10.1007/s12013-015-0525-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Hayashi H, Kawamura M. Lowering LDL cholesterol, but not raising LDL receptor activity, by ezetimibe. J Clin Lipidol 2013; 7:632-6. [DOI: 10.1016/j.jacl.2013.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/06/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
7
|
Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab 2013; 98:2944-51. [PMID: 23609838 DOI: 10.1210/jc.2012-4262] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Low serum 25-hydroxyvitamin D is a risk factor for osteoporosis, cardiovascular disease, diabetes, and cancer. Disruption of noncholesterol sterol absorption due to cholesterol-lowering therapies may result in reduced fat-soluble vitamin absorption. OBJECTIVE We have previously reported on the cholesterol-lowering efficacy and reduced sterol absorption of probiotic bile salt hydrolase active Lactobacillus reuteri NCIMB 30242; however, the effects on fat-soluble vitamins was previously unknown and the objective of the present study. DESIGN, SETTINGS, PATIENTS, AND INTERVENTION: The study was double-blind, placebo-controlled, randomized, parallel-arm, multicenter lasting 13 weeks. A total of 127 otherwise healthy hypercholesterolemic adults with low-density lipoprotein-cholesterol >3.4 mmol/L, triglycerides <4.0 mmol/L, and body mass index of 22 to 32 kg/m² were included. Subjects were recruited from 6 private practices in Prague, Czech Republic, and randomized to consume L. reuteri NCIMB 30242 or placebo capsules over a 9-week intervention period. OUTCOME MEASURES The primary outcome measure was the change in serum low-density lipoprotein-cholesterol over the 9-week intervention. Analysis of fat-soluble vitamins at weeks 0 and 9 were performed post hoc. RESULTS There were no significant differences between L. reuteri NCIMB 30242 and placebo capsule groups in serum vitamin A, vitamin E, or β-carotene or dietary intake over the intervention period (P > .05). L. reuteri NCIMB 30242 increased serum 25-hydroxyvitamin D by 14.9 nmol/L, or 25.5%, over the intervention period, which was a significant mean change relative to placebo of 17.1 nmol/L, or 22.4%, respectively (P = .003). CONCLUSIONS To our knowledge, this is the first report of increased circulating 25-hydroxyvitamin D in response to oral probiotic supplementation.
Collapse
Affiliation(s)
- Mitchell L Jones
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec H3A2B4, Canada
| | | | | |
Collapse
|
8
|
Rideout TC, Harding SV, Mackay DS. Metabolic and genetic factors modulating subject specific LDL-C responses to plant sterol therapy1This article is an invited review for the Journal's Made In Canada section. The authors gratefully acknowledge the training that was acquired at the Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba. We would specifically like to thank Dr. Peter Jones for his mentorship and significant contribution to the research contained within this manuscript. Can J Physiol Pharmacol 2012; 90:509-14. [DOI: 10.1139/y2012-060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reducing intestinal cholesterol absorption with plant sterol consumption is a well-characterized strategy to lower LDL-C and potentially reduce cardiovascular disease risk. However, over 50 years of clinical research demonstrate that there is significant heterogeneity in the individual LDL-C lowering response to plant sterol therapy. A clear understanding of why plant sterols work effectively in some individuals but not in others will ensure optimal integration of plant sterols in future personalized nutritional lipid-lowering strategies. This review will examine the current knowledge base surrounding the metabolic and genetic determinants of LDL-C lowering in response to plant sterol consumption.
Collapse
Affiliation(s)
- Todd C. Rideout
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Scott V. Harding
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE1 9NH, UK
| | - Dylan S. Mackay
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MM R3T 6C5, Canada
| |
Collapse
|
9
|
Mechanism of resistance to dietary cholesterol. J Lipids 2011; 2011:101242. [PMID: 22007308 PMCID: PMC3189572 DOI: 10.1155/2011/101242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background. Alterations in expression of hepatic genes that could contribute to resistance to dietary cholesterol were investigated in Sprague-Dawley rats, which are known to be resistant to the serum cholesterol raising action of dietary cholesterol. Methods. Microarray analysis was used to provide a comprehensive analysis of changes in hepatic gene expression in rats in response to dietary cholesterol. Changes were confirmed by RT-PCR analysis. Western blotting was employed to measure changes in hepatic cholesterol 7α hydroxylase protein. Results. Of the 28,000 genes examined using the Affymetrix rat microarray, relatively few were significantly altered. As expected, decreases were observed for several genes that encode enzymes of the cholesterol biosynthetic pathway. The largest decreases were seen for squalene epoxidase and lanosterol 14α demethylase (CYP 51A1). These changes were confirmed by quantitative RT-PCR. LDL receptor expression was not altered by dietary cholesterol. Critically, the expression of cholesterol 7α hydroxylase, which catalyzes the rate-limiting step in bile acid synthesis, was increased over 4-fold in livers of rats fed diets containing 1% cholesterol. In contrast, mice, which are not resistant to dietary cholesterol, exhibited lower hepatic cholesterol 7α hydroxylase (CYP7A1) protein levels, which were not increased in response to diets containing 2% cholesterol.
Collapse
|
10
|
Paraskevas KI, Pantopoulou A, Vlachos IS, Agrogiannis G, Iliopoulos DG, Karatzas G, Tzivras D, Mikhailidis DP, Perrea DN. Comparison of fibrate, ezetimibe, low- and high-dose statin therapy for the dyslipidemia of the metabolic syndrome in a mouse model. Angiology 2011; 62:144-54. [PMID: 21220373 DOI: 10.1177/0003319710387919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The treatment-of-choice for the optimal management of the dyslipidemia of the metabolic syndrome (MetS) is not clearly defined. We compared the efficacy of 4 drug regimes for the management of this dyslipidemia in a mouse model. MATERIALS AND METHODS A total of 60 C57Bl6 mice comprised the study group. The first 10 received standard mouse food for the whole experiment (control group). The remaining 50 mice received atherogenic diet for 14 weeks until the development of the MetS. The mice were then divided into 5 groups: the 1st group continued receiving atherogenic diet, while the other 4 groups received atherogenic diet plus ezetimibe (10 mg/kg per day), fenofibrate (100 mg/kg per day), low-dose atorvastatin (10 mg/kg per day), or high-dose (40 mg/kg per day) atorvastatin, respectively, for another 8 weeks. RESULTS High-dose atorvastatin treatment achieved the best lipid profile compared with low-dose atorvastatin, ezetimibe, and fibrate therapy. The lipid profile of mice receiving atherogenic diet plus high-dose atorvastatin treatment was similar with mice on regular chow. CONCLUSIONS High-dose atorvastatin treatment resulted in optimization of the lipid profile in the presence of a high-fat atherogenic diet in a mouse model. Our results suggest that high-dose atorvastatin treatment may be the optimal treatment option for the dyslipidemia associated with MetS. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.
Collapse
Affiliation(s)
- Kosmas I Paraskevas
- Laboratory of Experimental Surgery and Surgical Research, N S Christeas, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McNamara E, Archer MC. Ezetimibe reverses the inhibitory effects of dietary cholesterol on mammary tumorigenesis in rats. Int J Cancer 2010; 127:791-5. [PMID: 19957328 DOI: 10.1002/ijc.25089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are concerns regarding increased cancer incidence in patients treated with ezetimibe, an inhibitor of the absorption of dietary cholesterol. Here we tested the hypothesis that ezetimibe will accelerate mammary tumorigenesis in rats. The drug was administered at a dose of 1 ppm in an AIN-93G diet that contained 0.3% cholesterol. This experimental diet and control diets that contained either no additions or cholesterol or ezetimibe only, were fed to groups of 30 Sprague-Dawley rats 3 days after they were treated with 50 mg/kg methylnitrosourea (MNU). All rats were euthanized 22 weeks after MNU administration. Tumor multiplicity was significantly smaller in rats fed cholesterol than those fed no cholesterol (1.84 +/- 0.42 vs. 3.86 +/- 0.86 respectively, P < 0.05), but was significantly greater in the cholesterol/ezetimibe group than the group fed only cholesterol (3.48 +/- 0.59 vs. 1.84 +/- 0.42 respectively, P < 0.04). The average weight of tumors/rat was also significantly larger in the cholesterol/ezetimibe group than those fed cholesterol alone (5.67 +/- 1.15 vs. 2.56 +/- 0.71 respectively, P < 0.04). As expected, ezetimibe prevented the cholesterol raising effect of the dietary cholesterol. These results show that ezetimibe reverses the inhibitory effect of dietary cholesterol on the development of rat mammary tumors.
Collapse
Affiliation(s)
- Erin McNamara
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
12
|
Rideout TC, Harding SV, Mackay D, Abumweis SS, Jones PJ. High basal fractional cholesterol synthesis is associated with nonresponse of plasma LDL cholesterol to plant sterol therapy. Am J Clin Nutr 2010; 92:41-6. [PMID: 20444957 DOI: 10.3945/ajcn.2009.29073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The cholesterol-lowering effectiveness of plant sterol (PS) therapy is hindered by wide-ranging variability in LDL-cholesterol responsiveness across individuals. To capitalize on the LDL-cholesterol-lowering potential of PS in the clinical setting, it is paramount to characterize the metabolic factors that underlie this heterogeneity of responsiveness. OBJECTIVE The objective was to investigate the relation between cholesterol synthesis and plasma LDL-cholesterol reductions in response to PS consumption. DESIGN We evaluated previously conducted clinical PS interventions incorporating stable-isotope measures of cholesterol synthesis and conducted feeding studies in animal models of response (Syrian Golden hamsters) and nonresponse (C57BL/6J mice) to PS consumption. RESULTS From our clinical study population (n = 113), we identified 47 nonresponders (3.73 +/- 1.10% change in LDL cholesterol) and 66 responders (-15.16 +/- 1.04% change in LDL cholesterol) to PS therapy. The basal cholesterol fractional synthesis rate (FSR) as measured by direct deuterium incorporation was 23% higher (P = 0.003) in the nonresponder subgroup than in responders to PS therapy. The basal cholesterol FSR correlated (r = 0.22, P = 0.02) with the percentage change in LDL cholesterol after PS intervention. In support of our clinical observations, nonresponding mice showed a 77% higher (P = 0.001) basal cholesterol FSR than that of responding hamsters. Compared with control mice, PS-fed mice showed an increase in hepatic nuclear sterol regulatory element binding protein 2 abundance (1.3-fold of control, P = 0.04) and beta-hydroxy-beta-methylglutaryl coenzyme A reductase-mRNA expression (2.4-fold of control, P = 0.00). CONCLUSION The results suggest that subjects with high basal cholesterol synthesis are less responsive to PS treatment than are subjects with low basal cholesterol synthesis.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, Canada.
| | | | | | | | | |
Collapse
|
13
|
Niesen M, Bedi M, Lopez D. Diabetes alters LDL receptor and PCSK9 expression in rat liver. Arch Biochem Biophys 2007; 470:111-5. [PMID: 18054320 DOI: 10.1016/j.abb.2007.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/05/2007] [Accepted: 11/15/2007] [Indexed: 12/21/2022]
Abstract
Since the hepatic LDL receptor is regarded as a major determinant of plasma LDL levels, the effect of diabetes on the expression of this receptor was examined in rat liver. Inducing diabetes with streptozotocin caused a significant reduction in hepatic LDL receptor mRNA levels in concert with an increase in serum cholesterol levels. However, LDL receptor protein levels were unaffected by the diabetic state. Further investigation revealed that protein levels of PCSK9, which has been shown to enhance the degradation of the LDL receptor protein, were significantly decreased in the diabetic rats explaining the lack of reduction in LDL receptor protein levels. These observations indicate that the rate of LDL receptor cycling (function) in diabetic rats is decreased resulting in higher serum LDL levels.
Collapse
Affiliation(s)
- Melissa Niesen
- Department of Molecular Medicine, School of Basic Biomedical Sciences, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | |
Collapse
|
14
|
Gouni-Berthold I, Berthold HK, Gylling H, Hallikainen M, Giannakidou E, Stier S, Ko Y, Patel D, Soutar AK, Seedorf U, Mantzoros CS, Plat J, Krone W. Effects of ezetimibe and/or simvastatin on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase gene expression: a randomized trial in healthy men. Atherosclerosis 2007; 198:198-207. [PMID: 17980884 DOI: 10.1016/j.atherosclerosis.2007.09.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/22/2007] [Accepted: 09/24/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The combination of simvastatin, an HMG-CoA reductase inhibitor, and ezetimibe, an inhibitor of Niemann-Pick C1-like 1 protein, decreases cholesterol synthesis and absorption and reduces circulating LDL-cholesterol concentrations. The molecular mechanisms underlying the pronounced lipid-lowering effects of this combination have not been fully elucidated in humans. METHODS AND RESULTS One center, prospective, randomized, parallel three-group study in 72 healthy men (mean age 32+/-9 years, mean body mass index 25.7+/-3.2 kg/m(2)). Each group of twenty-four subjects received a 14-day treatment with either ezetimibe (10mg/day), simvastatin (40 mg/day) or their combination. Lipid levels, the ratio of non-cholesterol sterols to cholesterol concentrations (used as markers of cholesterol synthesis and absorption), cell surface LDL receptor (LDLR) protein as well as LDLR and HMG-CoA reductase gene expression in mononuclear blood cells were measured at baseline and at the end of the study. LDL-C decreased in all groups. Simvastatin decreased, ezetimibe increased and their combination had no effect on HMG-CoA reductase activity. Simvastatin and the combination of ezetimibe and simvastatin increased the HMG-CoA reductase and LDLR gene expression while ezetimibe had no effect. The cell surface LDLR protein expression remained unchanged in all groups. The combination of ezetimibe and simvastatin increased the expression of the serine protease proprotein convertase subtilisin/kexin 9 (PCSK9), an enzyme shown to down-regulate LDLR protein levels. CONCLUSIONS The co-administration of ezetimibe and simvastatin abrogates the ezetimibe-induced increase in cholesterol synthesis and up-regulates the LDLR gene but not protein expression, an effect possibly mediated through a parallel upregulation of PCSK9 expression.
Collapse
Affiliation(s)
- Ioanna Gouni-Berthold
- Department of Internal Medicine II, University of Cologne, Kerpener Street 62, 50937 Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gazi IF, Mikhailidis DP. Non-low-density lipoprotein cholesterol-associated actions of ezetimibe: an overview. Expert Opin Ther Targets 2006; 10:851-66. [PMID: 17105372 DOI: 10.1517/14728222.10.6.851] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ezetimibe, an intestinal cholesterol absorption inhibitor, lowers circulating low-density lipoprotein cholesterol (LDL-C) levels both when administered as monotherapy and in combination with other hypolipidaemic drugs, mostly statins. This review focuses on the effects of ezetimibe on non-LDL-C-associated variables. In most studies, ezetimibe effectively reduced triglyceride and increased high density lipoprotein cholesterol levels. The authors also consider the effect of ezetimibe on other variables such as C-reactive protein levels, insulin sensitivity and endothelial function. Ezetimibe is useful in patients with sitosterolaemia (a rare inherited disorder) as it significantly reduces plasma phytosterol concentrations. Ezetimibe fulfils two of the three essential characteristics of any drug (efficacy and safety). However, clinical studies are required to provide evidence of its ability to reduce vascular events.
Collapse
Affiliation(s)
- Irene F Gazi
- Royal Free Hospital, Department of Clinical Biochemistry, Royal Free and University College of Medicine, University of London, Pond Street, London NW3 2QG, UK
| | | |
Collapse
|