1
|
Hosseinalizadeh H, Hussain QM, Poshtchaman Z, Ahsan M, Amin AH, Naghavi S, Mahabady MK. Emerging insights into keratin 7 roles in tumor progression and metastasis of cancers. Front Oncol 2024; 13:1243871. [PMID: 38260844 PMCID: PMC10800941 DOI: 10.3389/fonc.2023.1243871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Keratin 7 (KRT7), also known as cytokeratin-7 (CK-7) or K7, constitutes the principal constituent of the intermediate filament cytoskeleton and is primarily expressed in the simple epithelia lining the cavities of the internal organs, glandular ducts, and blood vessels. Various pathological conditions, including cancer, have been linked to the abnormal expression of KRT7. KRT7 overexpression promotes tumor progression and metastasis in different human cancers, although the mechanisms of these processes caused by KRT7 have yet to be established. Studies have indicated that the suppression of KRT7 leads to rapid regression of tumors, highlighting the potential of KRT7 as a novel candidate for therapeutic interventions. This review aims to delineate the various roles played by KRT7 in the progression and metastasis of different human malignancies and to investigate its prognostic significance in cancer treatment. Finally, the differential diagnosis of cancers based on the KRT7 is emphasized.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Poshtchaman
- Department of Nursing, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | | | - Ali H. Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Soroush Naghavi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Ni L. Advances in Human Dendritic Cell-Based Immunotherapy Against Gastrointestinal Cancer. Front Immunol 2022; 13:887189. [PMID: 35619702 PMCID: PMC9127253 DOI: 10.3389/fimmu.2022.887189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs), the strongest antigen-presenting cells, are a focus for orchestrating the immune system in the fight against cancer. Basic scientific investigations elucidating the cellular biology of the DCs have resulted in new strategies in this fight, including cancer vaccinology, combination therapy, and adoptive cellular therapy. Although immunotherapy is currently becoming an unprecedented bench-to-bedside success, the overall response rate to the current immunotherapy in patients with gastrointestinal (GI) cancers is pretty low. Here, we have carried out a literature search of the studies of DCs in the treatment of GI cancer patients. We provide the advances in DC-based immunotherapy and highlight the clinical trials that indicate the therapeutic efficacies and toxicities related with each vaccine. Moreover, we also offer the yet-to-be-addressed questions about DC-based immunotherapy. This study focuses predominantly on the data derived from human studies to help understand the involvement of DCs in patients with GI cancers.
Collapse
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N, Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front Cell Dev Biol 2021; 9:686544. [PMID: 34262904 PMCID: PMC8273339 DOI: 10.3389/fcell.2021.686544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready 'N Able to Improve Clinical Outcome? Cancers (Basel) 2020; 12:cancers12020299. [PMID: 32012714 PMCID: PMC7072269 DOI: 10.3390/cancers12020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.
Collapse
|
6
|
Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol Res Pract 2019; 215:152691. [PMID: 31676092 DOI: 10.1016/j.prp.2019.152691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Despite significant advances over the past decades of research, pancreatic cancer (PC) continues to have the worst 5-year survival of any malignancy. Dendritic cells (DCs) are the most potent professional antigen-presenting cells and are involved in the induction and regulation of antitumor immune responses. DC-based immunotherapy has been used in clinical trials for PC. Although safety, efficacy, and immune activation were reported in patients with PC, DC vaccines have not yet fulfilled their promise. Additional strategies for combinatorial approaches aimed to augment and sustain the antitumor specific immune response elicited by DC vaccines are currently being investigated. Here, we will discuss DC vaccination immunotherapies that are currently under preclinical and clinical investigation and potential combination approaches for treating and improving the survival of PC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Li
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Chongqing, China.
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int 2018; 18:85. [PMID: 29946224 PMCID: PMC6006559 DOI: 10.1186/s12935-018-0585-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anton Deicher
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden.,2Faculty of Medicine, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Roland Andersson
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Bobby Tingstedt
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Gert Lindell
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Monika Bauden
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Daniel Ansari
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
8
|
Combination epidermal growth factor receptor variant III peptide-pulsed dendritic cell vaccine with miR-326 results in enhanced killing on EGFRvIII-positive cells. Oncotarget 2018; 8:26256-26268. [PMID: 28412740 PMCID: PMC5432254 DOI: 10.18632/oncotarget.15445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/06/2017] [Indexed: 01/02/2023] Open
Abstract
The mutant Type III variant of epidermal growth factor receptor (EGFRvIII) is present in approximately one-third of glioblastoma (GBM) patients. It is never found in normal tissues; therefore, it represents a candidate target for GBM immunotherapy. PEPvIII, a peptide sequence from EGFRvIII, was designed to represent a target of glioma and is presented by MHC I/II complexes. Dendritic cells (DCs) have great potential to sensitize CD4+ T and CD8+ T cells to precisely target and eradicate GBM. Here, we show that PEPvIII could be loaded by DCs and presented to T lymphocytes, especially PEPvIII-specific CTLs, to precisely kill U87-EGFRvIII cells. In addition to inhibiting proliferation and inducing the apoptosis of U87-EGFRvIII cells, miR-326 also reduced the expression of TGF-β1 in the tumour environment, resulting in improved efficacy of T cell activation and killing via suppressing the SMO/Gli2 axis, which at least partially reversed the immunosuppressive environment. Furthermore, combining the EGFRvIII-DC vaccine with miR-326 was more effective in killing U87-EGFRvIII cells compared with the administration of either one alone. This finding suggested that a DC-based vaccine combined with miR-326 may induce more powerful anti-tumour immunity against GBM cells that express a relevant antigen, which provides a promising approach for GBM immunotherapy.
Collapse
|
9
|
Abraham RS, Mitchell DA. Gene-modified dendritic cell vaccines for cancer. Cytotherapy 2017; 18:1446-1455. [PMID: 27745604 DOI: 10.1016/j.jcyt.2016.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) vaccines are an immunotherapeutic approach to cancer treatment that use the antigen-presentation machinery of DCs to activate an endogenous anti-tumor response. In this treatment strategy, DCs are cultured ex vivo, exposed to tumor antigens and administered to the patient. The ex vivo culturing provides a unique and powerful opportunity to modify and enhance the DCs. As such, a variety of genetic engineering approaches have been employed to optimize DC vaccines, including the introduction of messenger RNA and small interfering RNA, viral gene transduction, and even fusion with whole tumor cells. In general, these modifications aim to improve targeting, enhance immunogenicity, and reduce susceptibility to the immunosuppressive tumor microenvironment. It has been demonstrated that several of these modifications can be employed in tandem, allowing for fine-tuning and optimization of the DC vaccine across multiple metrics. Thus, the application of genetic engineering techniques to the dendritic cell vaccine platform has the potential to greatly enhance its efficacy in the clinic.
Collapse
Affiliation(s)
- Rebecca S Abraham
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605
| | - Duane A Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Department of Neurosurgery, University of Florida, Gainesville, FL 32605.
| |
Collapse
|
10
|
Xiao L, Erb U, Zhao K, Hackert T, Zöller M. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology 2017; 6:e1319044. [PMID: 28680753 DOI: 10.1080/2162402x.2017.1319044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) has a dismal prognosis and adjuvant immunotherapy frequently is of low efficacy due to immunosuppressive features of PaCa and PaCa-stroma. We here explored, whether the efficacy of vaccination with tumor-exosome (TEX)-loaded dendritic cells (DC) can be improved by combining with drugs affecting myeloid-derived suppressor cells (MDSC). Experiments were performed with the UNKC6141 PaCa line. UNKC6141 TEX-loaded DC were weekly intravenously injected, mice additionally receiving Gemcitabine (GEM) and/or ATRA and/or Sunitinib (Sun). UNKC6141 grow aggressively after subcutaneous and orthotopic application and are consistently recovered in peripheral blood, bone marrow, lung and frequently liver. Vaccination with DC-TEX significantly prolonged the survival time, the efficacy of DC-TEX exceeding that of the cytotoxic drugs. However, ATRA, Sun and most efficiently GEM, sufficed for a pronounced reduction of MDSC including tumor-infiltrating MDSC, which was accompanied by a decrease in migrating and metastasizing tumor cells. When combined with DC-TEX vaccination, a higher number of activated T cells was recovered in the tumor and the survival time was prolonged compared with only DC-TEX vaccinated mice. As ATRA, GEM and Sun affect MDSC at distinct maturation and activation stages, a stronger support for DC-TEX vaccination was expected by the drug combination. Intrapancreatic tumor growth was prevented beyond the death of control mice. However, tumors developed after a partial breakdown of the immune system by the persisting drug application. Nonetheless, in combination with optimized drug tuning to prevent MDSC maturation and activation, vaccination with TEX-loaded DC appears a most promising option in PaCa therapy.
Collapse
Affiliation(s)
- Li Xiao
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Ulrike Erb
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Kun Zhao
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
11
|
Chen J, Xiao-Zhong G, Qi XS. Clinical Outcomes of Specific Immunotherapy in Advanced Pancreatic Cancer: A Systematic Review and Meta-Analysis. J Immunol Res 2017; 2017:8282391. [PMID: 28265583 PMCID: PMC5318641 DOI: 10.1155/2017/8282391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Specific immunotherapies, including vaccines with autologous tumor cells and tumor antigen-specific monoclonal antibodies, are important treatments for PC patients. To evaluate the clinical outcomes of PC-specific immunotherapy, we performed a systematic review and meta-analysis of the relevant published clinical trials. The effects of specific immunotherapy were compared with those of nonspecific immunotherapy and the meta-analysis was executed with results regarding the overall survival (OS), immune responses data, and serum cancer markers data. The pooled analysis was performed by using the random-effects model. We found that significantly improved OS was noted for PC patients utilizing specific immunotherapy and an improved immune response was also observed. In conclusion, specific immunotherapy was superior in prolonging the survival time and enhancing immunological responses in PC patients.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, Liaoning 110016, China
| | - Guo Xiao-Zhong
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, Liaoning 110016, China
| | - Xing-Shun Qi
- Department of Gastroenterology, Shenyang General Hospital of PLA, No. 83 Wenhua Road Shenyang City, Liaoning 110016, China
| |
Collapse
|
12
|
Chen J, Guo XZ, Li HY, Zhao JJ, Xu WD. Dendritic cells engineered to secrete anti-DcR3 antibody augment cytotoxic T lymphocyte response against pancreatic cancer in vitro. World J Gastroenterol 2017; 23:817-829. [PMID: 28223726 PMCID: PMC5296198 DOI: 10.3748/wjg.v23.i5.817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the enhanced cytotoxic T lymphocyte responses against pancreatic cancer (PC) in vitro induced by dendritic cells (DCs) engineered to secrete anti-DcR3 monoclonal antibody (mAb).
METHODS DCs, T lymphocytes and primary PC cells were obtained from PC patients. DCs were transfected with a designed humanized anti-DcR3 monoclonal antibody heavy and light chain mRNA and/or total tumor RNA (DC-tumor-anti-DcR3 RNA or DC-total tumor RNA) by using electroporation technology. The identification, concentration and function of anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA were determined by western blotting and enzyme-linked immunosorbent assay. After co-culturing of autologous isolated PC cells with target DCs, the effects of secreting anti-DcR3 mAb on RNA-DCs’ viability and apoptosis were assessed by MTT assay and flow cytometry. Analysis of enhanced antigen-specific immune response against PC induced by anti-DcR3 mAb secreting DCs was performed using a 51Cr releasing test. T cell responses induced by RNA-loaded DCs were analyzed by measuring cytokine levels, including IFN-γ, IL-10, IL4, TNF-α and IL-12.
RESULTS The anti-DcR3 mAb secreted by DCs reacted with recombinant human DcR3 protein and generated a band with 35 kDa molecular weight. The secreting mAb was transient, peaking at 24 h and becoming undetectable after 72 h. After co-incubation with DC-tumor-anti-DcR3 RNA for designated times, the DcR3 level in the supernatant of autologous PC cells was significantly down-regulated (P < 0.05). DCs secreting anti-DcR3 mAb could improve cell viability and slow down the apoptosis of RNA-loaded DCs, compared with DC-total tumor RNA (P < 0.01). The anti-DcR3 mAb secreted by DC-tumor-anti-DcR3 RNA could enhance the induction of cytotoxic T lymphocytes (CTLs) activity toward RNA-transfected DCs, primary tumor cells, and PC cell lines, compared with CTLs stimulated by DC-total tumor RNA or control group (P < 0.05). Meanwhile, the antigen-specific CTL responses were MHC class I-restricted. The CD4+ T cells and CD8+ T cells incubated with anti-DcR3 mAb secreting DCs could produce extremely higher level IFN-γ and lower level IL4 than those incubated with DC-total tumor RNA or controls (P < 0.01).
CONCLUSION DCs engineered to secrete anti-DcR3 antibody can augment CTL responses against PC in vitro, and the immune-enhancing effects may be partly due to their capability of down-regulating DC apoptosis and adjusting the Th1/Th2 cytokine network.
Collapse
|
13
|
Antigen-specific T cell response from dendritic cell vaccination using side population cell-associated antigens targets hepatocellular carcinoma. Tumour Biol 2016; 37:11267-78. [DOI: 10.1007/s13277-016-4935-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/28/2016] [Indexed: 12/27/2022] Open
|