1
|
Zargari M, Maadi N, Rezapour M, Bagheri A, Fallahpour S, Nosrati M, Mahrooz A. The Regulatory Variant -108C/T in the Promoter of Paraoxonase 1 (PON1) Gene has a More Important Role in Regulating PON1 Activity Compared to rs3735590 in 3'-UTR in Patients with Coronary Artery Disease. Adv Biomed Res 2024; 13:38. [PMID: 39224397 PMCID: PMC11368222 DOI: 10.4103/abr.abr_391_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/20/2024] [Accepted: 03/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to assess the serum activity of paraoxonase 1 (PON1) in patients with coronary artery disease (CAD) based on two genetic variants including the -108C/T variant in the promoter region and the rs3735590 variant in the binding site of miR-616 at the 3'-UTR of the PON1 gene. Materials and Methods A total of 140 subjects who exhibited clinical symptoms of CAD underwent diagnostic coronary angiography. The patients with CAD were further categorized into two groups: single-vessel disease (SVD) and multi-vessel disease (MVD). The study variants were genotyped using the restriction fragment length polymorphism (RFLP) technique after polymerase chain reaction amplification. Results After adjusting for age, gender, body mass index, metformin, and statin usage, a significant association was observed between the -108C/T variant and PON1 activity (P < 0.001). In the sub-groups of both SVD and MVD, individuals with the TC+CC genotypes exhibited significantly higher PON1 activity compared to TT homozygotes (P = 0.001 for SVD and P = 0.01 for MVD). As for the rs3735590 variant, individuals with the A allele (GA+AA genotypes) had higher PON1 activity compared to those with the GG genotype in both the SVD and MVD groups, although the results did not reach statistical significance. Conclusions Our study findings indicate a significant decrease in PON1 activity among patients with obstructive CAD. Notably, our results suggest that the -108C/T variant exerts a greater influence on PON1 activity compared to the rs3735590 variant. These findings highlight the crucial role of the -108C/T variant in modulating PON1 activity within the context of atherosclerosis.
Collapse
Affiliation(s)
- Mehryar Zargari
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Maadi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maysam Rezapour
- Department of Paramedicine, Amol Paramedical Sciences School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samane Fallahpour
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Mahrooz A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv Clin Chem 2024; 121:132-171. [PMID: 38797541 DOI: 10.1016/bs.acc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High density lipoprotein (HDL) functions are mostly mediated through a complex proteome, particularly its enzymes. HDL can provide a scaffold for the assembly of several proteins that affect each other's function. HDL particles, particularly small, dense HDL3, are rich in paraoxonase 1 (PON1), which is an important enzyme in the functionality of HDL, so the antioxidant and antiatherogenic properties of HDL are largely attributed to this enzyme. There is an increasing need to represent a valid, reproducible, and reliable method to assay HDL function in routine clinical laboratories. In this context, HDL-associated proteins may be key players; notably PON1 activity (its arylesterase activity) may be a proper candidate because its decreased activity can be considered an important risk factor for HDL dysfunctionality. Of note, automated methods have been developed for the measurement of serum PON1 activity that facilitates its assay in large sample numbers. Arylesterase activity is proposed as a preferred activity among the different activities of PON1 for its assay in epidemiological studies. The binding of PON1 to HDL is critical for the maintenance of its activity and it appears apolipoprotein A-I plays an important role in HDL-PON1 interaction as well as in the biochemical and enzymatic properties of PON1. The interrelationships between HDL, PON1, and HDL's other components are complex and incompletely understood. The purpose of this review is to discuss biochemical and clinical evidence considering the interactions of PON1 with HDL and the role of this enzyme as an appropriate biomarker for HDL function as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
4
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|
5
|
Nosrati M, Safari M, Alizadeh A, Ahmadi M, Mahrooz A. The Atherogenic Index Log (Triglyceride/HDL-Cholesterol) as a Biomarker to Identify Type 2 Diabetes Patients with Poor Glycemic Control. Int J Prev Med 2021; 12:160. [PMID: 35070193 PMCID: PMC8724629 DOI: 10.4103/ijpvm.ijpvm_357_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Identifying appropriate biomarkers for predicting type 2 diabetes (T2D) patients with increased HbA1c may prove helpful in preventing increased risk of cardiovascular disease (CVD). The present study was conducted to analyze the diagnostic performance of the atherogenic index log (TG/HDL-C) in T2D patients with increased HbA1c. METHODS Patients with T2D were classified into two groups according to having an HbA1c <8% or ≥8%. Atherogenic index was calculated from the logarithmic transformation of TG/HDL-C. Receiver operating characteristic curve was used to evaluate the diagnostic performance of log (TG/HDL-C). Insulin and fasting glucose concentrations were used to determine homeostasis model assessment for insulin resistance (HOMA-IR). RESULTS Compared with the patients with HbA1c <8%, log (TG/HDL-C) was significantly higher in the patients with HbA1c ≥8% (p = 0.025). The atherogenic index was a biomarker for the prediction of T2D patients with HbA1c ≥8% versus patients with HbA1c <8%, as shown in the area under the curve (AUC = 0.61, P = 0.013). The best cut-off point of log (TG/HDL-C) for the discrimination between patients with HbA1c ≥8% versus patients with HbA1c <8% determined to be 0.44. Atherogenic index was significantly and positively correlated with HOMA-IR in female patients (r = 0.313, P = 0.003) and in patients with an age ≥5o (r = 0.253, P = 0.021). CONCLUSION The log (TG/HDL-C) in addition to its known association with enhanced CVD risk could be considered as a biomarker to predict T2D patients with poor glycemic control. Therefore, the increased ratio may provide a simple and useful way of identifying poor glycemic T2D patients who are possibly to be at elevated risk of CVD.
Collapse
Affiliation(s)
- Mani Nosrati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Safari
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Ahmadi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Address for correspondence: Dr. Abdolkarim Mahrooz, Ph.D., Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran. E-mail:
| |
Collapse
|
6
|
Mahrooz A, Shokri Y, Variji A, Zargari M, Alizadeh A, Mehtarian E. Improved risk assessment of coronary artery disease by substituting paraoxonase 1 activity for HDL-C: Novel cardiometabolic biomarkers based on HDL functionality. Nutr Metab Cardiovasc Dis 2021; 31:1166-1176. [PMID: 33579580 DOI: 10.1016/j.numecd.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Developing laboratory assays to evaluate HDL functions and improve cardiovascular disease (CVD) risk assessment has recently emerged as a challenge. The present study was conducted to help predict the risk of coronary artery disease (CAD) by investigating new cardiometabolic risk factors based on substituting paraoxonase 1 (PON1) as a critical enzyme in the functionality of HDL for that of HDL-C. METHODS AND RESULTS The present study recruited 274 subjects undergoing diagnostic coronary angiography, 92 without significant CAD (non-CAD), and 182 with a severe CAD. The diagnostic accuracy of the new biomarkers in non-CAD versus multi-vessel disease was obtained in descending order of AUC as 0.72 (P < 0.001) for log (TG/PON1), 0.70 (P < 0.001) for nonHDL-C/PON1, and 0.67 (P < 0.001) for LDL-C/PON1. After performing a multivariate adjustment for age, gender, BMI, statin therapy, and diabetes mellitus, the increased odds of CAD remained significant for the new cardiometabolic ratios as independent variables [adjusted OR = 1.47 (1.15-1.88), p = 0.002 for LDL-C/PON1; adjusted OR = 2.15 (1.41-3.5), p = 0.009 for nonHDL-C/PON1; adjusted OR = 5.03 (2.14-13.02), p = 0.004 for log (TG/PON1)]. CAD was diagnosed with an optimal discriminating cutoff of 1.84 for LDL-C/PON1, 2.8 for nonHDL-C/PON1, and 0.48 for log (TG/PON1). CONCLUSIONS To improve CAD's risk assessment, the PON1 activity was proposed as an alternative to HDL-C in the commonly used atherogenic lipid ratios. Substituting the PON1 activity for the HDL-C concentration can provide an index of the HDL activity. The present study sought to exploit the lipoprotein-related risk factors of CAD from a more effective perspective.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Variji
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Ehsan Mehtarian
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Mortazavi H, Omidi-Ardali H, Amini SA, Saffari-Chaleshtori J, Samani KG. In vivo/ in silico insight into the effect of titanium dioxide nanoparticle on serum paraoxonase 1 activity in rat. J Biomol Struct Dyn 2021; 40:4961-4971. [PMID: 33459188 DOI: 10.1080/07391102.2020.1864662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Serum paraoxonase1 (PON1) has special function in human body organism including the antioxidant and anti-atherogenic properties. In the present study, the effect of TiO2 nanoparticles on the activity and structure of the PON1 has been evaluated through in vivo and in silico methods. After treatments of the rats with different doses of TiO2 NPs, blood samples were collected and serum PON1 activity was measured by phenylacetate and paraoxon as substrate. In addition, the effects of TiO2 NP on enzyme structure were analyzed through Molecular dynamic (MD) simulation via Gromacs software package to obtain RMSD, RMSF, Rg, SASA, and secondary structures values. A significant reduction (p < 0.05) in arylesterase & paraoxonase activities of serum PON1 were monitored in Spectrometric assays when rats were treated with 150 and 200 mg/kg doses of TiO2 NPs. RMSD, RG, RMSF, and SASA values in the presence of TiO2 have been increased while RMSF values of the L1 and L2 loops (gate of the catalytic site) have been reduced. Moreover, Hydrogen bonds and secondary structure values of the enzyme decreased in the presence of TiO2 NP. All of these MD simulation results could indicate the instability of the PON1 structure bounded to TiO2 NP. TiO2 NP could cause a disturbance in the enzyme structure and function of PON1 based on the results. PON1 prevents oxidation of LDL and can delay atherosclerosis progression while in the presence of TiO2 NP these protective effects could be endangered.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hessameddin Mortazavi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Omidi-Ardali
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Asadollah Amini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Racis M, Stanisławska-Sachadyn A, Sobiczewski W, Wirtwein M, Krzemiński M, Krawczyńska N, Limon J, Rynkiewicz A, Gruchała M. Association of Genes Related to Oxidative Stress with the Extent of Coronary Atherosclerosis. Life (Basel) 2020; 10:life10090210. [PMID: 32961879 PMCID: PMC7554836 DOI: 10.3390/life10090210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is believed to play a critical role in atherosclerosis initiation and progression. In line with this, in a group of 1099 subjects, we determined eight single nucleotide polymorphisms (SNPs) related to oxidative stress (PON1 c.575A>G, MPO c.−463G>A, SOD2 c.47T>C, GCLM c.−590C>T, NOS3 c.894G>T, NOS3 c.−786T>C, CYBA c.214C>T, and CYBA c.−932A>G) and assessed the extent of atherosclerosis in coronary arteries based on Gensini score. An increased risk of having a Gensini score in the higher half of the distribution was observed for the PON1 c.575G allele (odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.004–1.617, p = 0.046). Next, the genetic risk score (GRS) for the additive effect of the total number of pro-oxidative alleles was assessed. We noted an increase in the risk of having a Gensini score above the median with the maximum number of risk alleles (OR = 2.47, 95% CI: 1.19–5.23, p = 0.014). A univariate Spearman’s test revealed significant correlation between the total number of pro-oxidant alleles (GRS) and the Gensini score (ρ = 0.068, p = 0.03). In conclusion, the PON1 c.575A>G variant and the high number of risk alleles (GRS) were independent risk factors for a high Gensini score. We suggest, however, that GRS might occur as a more valuable component in adding a predictive value to the genetic background of atherosclerosis.
Collapse
Affiliation(s)
- Milena Racis
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
- Correspondence: ; Fax: +48-58-3461201
| | - Anna Stanisławska-Sachadyn
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Wojciech Sobiczewski
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
| | - Marcin Wirtwein
- Department of Pharmacology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland;
| | - Michał Krzemiński
- Department of Probability and Biomathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland;
| | - Natalia Krawczyńska
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland; (A.S.-S.); (N.K.); (J.L.)
| | - Andrzej Rynkiewicz
- Department of Cardiology and Cardiosurgery, University of Warmia and Mazury in Olsztyn, Al. Warszawska 30, 10-082 Olsztyn, Poland;
| | - Marcin Gruchała
- First Department of Cardiology, Medical University of Gdańsk, ul. Dębinki 7, 80-211 Gdańsk, Poland; (W.S.); (M.G.)
| |
Collapse
|
9
|
Abudayyak M, Boran T, Tukel R, Oztas E, Özhan G. The Role of PON1 Variants in Disease Susceptibility in a Turkish Population. Glob Med Genet 2020; 7:41-46. [PMID: 32939514 PMCID: PMC7490120 DOI: 10.1055/s-0040-1715568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Paraoxonase 1 (PON1) enzyme plays a major role in antioxidant defense and protects the cells against reactive species. The most common
PON1
Q192R and L55M polymorphisms are responsible for a wide variation of PON1 activity, which showed an up to 13-fold interindividual variation among the same genotype.
PON1
genotypes were evaluated with the development of pancreatitis, colorectal cancer, and hypothyroidism in a hospital-based, case-control study. Individuals with rs662
G
allele had a two-fold risk of developing hypothyroidism. A weak association was found between rs854560
T
allele and pancreatitis. The results were preliminary. Further studies with a larger number and detailed biochemical parameters are needed.
Collapse
Affiliation(s)
- Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Tuğçe Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Rumeysa Tukel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Oztas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr A, Kashi Z, Bahar A, Bagheri A, Mahrooz A. Importance of paraoxonase 1 (PON1) as an antioxidant and antiatherogenic enzyme in the cardiovascular complications of type 2 diabetes: Genotypic and phenotypic evaluation. Diabetes Res Clin Pract 2020; 161:108067. [PMID: 32044348 DOI: 10.1016/j.diabres.2020.108067] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/13/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Oxidant-antioxidant imbalance is involved in the etiology of different diseases, including cardiovascular diseases (CVDs), liver disorders, kidney diseases, cancers and diabetes mellitus. Antioxidant enzymes play a key role in striking an oxidant-antioxidant balance. Moreover, paraoxonase 1 (PON1) is an antioxidant enzyme that binds with high-density lipoprotein (HDL) in the circulation, and antioxidant and antiaterogenic properties of this lipoprotein are significantly associated with PON1. Research suggests PON1 contributes to the pathogenesis of certain human diseases such as type 2 diabetes (T2D). The association between PON1 and T2D appear to be reciprocal so that the disease significantly decreases PON1 levels and in turn, the genetics of PON1 may have a role the risk of susceptibility to T2D. Several factors that reduce the activity and concentration of PON1 in patients with T2D include increased glycation and loss-of-function polymorphisms. The genotypic and phenotypic evaluations of PON1 are therefore crucial for assessing the risk of cardiovascular complications in these patients, and strategies for increasing or restoring PON1 levels are useful for reducing or preventing their cardiovascular complications as their main cause of mortality. The present review aimed at discussing and emphasizing the key role of PON1 in T2D as a silent and dangerous disease.
Collapse
Affiliation(s)
- Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atena Variji
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anvarsadat Kianmehr
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, Faculty of Advanced Madical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019; 73:1-10. [PMID: 31351988 DOI: 10.1016/j.clinbiochem.2019.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Paraoxonase 1 (PON1) is an important antiatherogenic and antioxidant enzyme in the circulation that has been associated with adverse health outcomes particularly cardiovascular disease (CVD) and other metabolic disorders. PON1 is a highly promiscuous enzyme and can hydrolyse a large variety of substrates, however, detailed structure/function studies have concluded that the natural substrates for PON1 are lipophilic lactones. The interindividual variability in PON1 activity has been mainly attributed to genetic determinants; however, it appears that the contribution of epigenetics has been ignored as a result of the lack of adequate research. CONTENT Epigenetic processes, including the histone modifications in the PON1 gene, the methylation of CpG sites in the promoter region of the PON1 gene and the microRNA modulation of PON1 expression can be responsible for the under researched gap between the environmental and genetic regulation of PON1. Environmental factors, including diet, pollution and lifestyle-related factors widely differ between individuals and populations and can cause large differences in the distribution of PON1 and it is important to note that their effects may be exerted through the epigenetic processes. This review discusses and emphasizes the importance of the epigenetic regulation of PON1 as a less-studied subject to highlight future research landscapes. SUMMARY Epigenetic regulation is known as an important contributor to the pathogenesis of human diseases, particularly multifactorial diseases such as CVD, which is life-threatening. Due to the importance of PON1 in the functionality of high-density lipoprotein (HDL) and its association with CVD, further explorations of its epigenetic regulation using advanced methods such as Methyl-Seq may lead to the identification of new epigenetic contributors that in turn may lead to targeted therapies.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mike Mackness
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghaffari-Cherati
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parisa Masoumi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Evaluation of Paraoxonase, Arylesterase, and Homocysteine Thiolactonase Activities in Patients with Diabetes and Incipient Diabetes Nephropathy. J Med Biochem 2019; 38:481-488. [PMID: 31496913 PMCID: PMC6708292 DOI: 10.2478/jomb-2019-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study is to examine the relationship among the changes in activities of paraoxonase (PON), arylesterase (ARE) and homocysteine thiolactonase (HTLase) enzyme having antioxidant properties and the development of diabetic nephropathy (DN), one of the most common complications of diabetes. Methods Normoalbuminuric type-2 diabetic patients (Group II, n=100), microalbuminuric type 2 diabetic patients (Group III, n=100) and the control group (Group I, n=100) were included in the study. The age and gender of the patient groups matched with the age and gender of the control group. HTLase, PON and ARE enzyme activities were measured by the spectrophotometric method using a g-thiobutyrinolactone, paraoxon, and phenylacetate substrates respectively. In this study, an autoanalyzer application was developed in order to measure HTLase enzyme activity for the first time. Results Serum HTLase, ARE and PON activities of Group III and Group II were significantly low compared to HTLase, ARE and PON results of Group I (p<0.05). Conclusions Based on our results, PON, ARE and HTLase enzyme activities were found to be decreased due to the increase in the degree of DN.
Collapse
|
13
|
Hemati M, Mansourabadi AH, Bafghi MK, Moradi A. Association between paraoxonase-1 gene Q192R and L55M polymorphisms and risk of gastric cancer: A case-control study from Iran. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:521-532. [PMID: 30857497 DOI: 10.1080/15257770.2019.1573371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to examine the relation between two paraoxonase1 (PON1) polymorphisms, Q192R and L55M and susceptibility to gastric cancer in an Iranian population. In this case-control study the PON1 polymorphisms were assessed in 90 gastric cancer patients and 90 healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regarding PON1 Q192R polymorphism, a significant increase in the R allele in the patient group compared with the controls (p value = 0.0006) While the Q allele was more frequent in the control group. No significant difference was found in the genotype or allele frequency of the L55M polymorphism between healthy individuals and patients with gastric cancer. Our results demonstrated the protective effect of Q allele against gastric cancer.
Collapse
Affiliation(s)
- Mahdie Hemati
- a Department of clinical Biochemistry faculty of Medicine , Shahid Sadoughi University of Medical Sciences and Health Services , Yazd , Iran.,b Hematology and Oncology Research Center Shahid Sadoughi University of Medical Sciences Yazd , Iran
| | - Amir Hossein Mansourabadi
- c Department of clinical immunology faculty of medicine , Tehran university of medical science , Tehran , Iran
| | | | - Ali Moradi
- a Department of clinical Biochemistry faculty of Medicine , Shahid Sadoughi University of Medical Sciences and Health Services , Yazd , Iran.,b Hematology and Oncology Research Center Shahid Sadoughi University of Medical Sciences Yazd , Iran
| |
Collapse
|
14
|
Genotype and phenotype of salt-stimulated paraoxonase 1 (PON1) is associated with atherogenic indices in type 2 diabetes. J Diabetes Metab Disord 2018; 17:1-10. [PMID: 30288380 PMCID: PMC6154515 DOI: 10.1007/s40200-018-0332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022]
Abstract
Background Paraoxonase 1 (PON1) and lipid abnormalities contribute to the development of cardiovascular disease, which is the principal cause of mortality in patients with type 2 diabetes (T2D). Data are not available on the potential association between salt-stimulated activity of PON1 (PON1-salt) and the atherogenic indices in T2D, therefore, we focused on these associations and evaluated whether the functional variants PON1-Q192R and PON1-L55M influence the associations. Methods Paraoxonase activity (PON1-para), arylesterase activity (PON1-aryl) and salt-stimulated activity (PON1-salt) were measured by spectrophotometric assays. The atherogenic index of plasma (AIP) was calculated from the log (TG/HDL-C). The genetic analyses were made by the restricted fragment length polymorphism after PCR amplification. Results We observed that PON1-salt was negatively correlated with total cholesterol (TC)/HDL-C (r = −0.441,p = 0.006), LDL-C/HDL-C (r = −0.415, p = 0.011), and AIP (r = −0.422, p = 0.009). Correlations between PON1-salt and all three atherogenic indices were significantly affected by PON1-L55M and PON1-Q192R. Linear regression showed that AIP (p = 0.002), LDL-C/HDL-C (p = 0.005), and TC/HDL-C (p = 0.002) were independently associated with PON1-salt. Based on Ridge regression, the standardized coefficients −0.358, −0.297, and − 0.044 were obtained for AIP, LDL-C/HDL-C, and TC/HDL-C, respectively, and this shows that AIP could have more negative effect on PON1-salt than the others. Conclusions The decreased PON1-salt may be considered as a risk factor for atherosclerosis in T2D, therefore, understanding the associations between PON1-salt as an important although neglected property and atherogenic indices may be valuable in T2D. Accordingly, detection of PON1-salt status (phenotype and genotype) together with the atherogenic indices particularly AIP could be beneficial in identifying the increased atherogenicity in T2D.
Collapse
|
15
|
Ren H, Tan SL, Liu MZ, Banh HL, Luo JQ. Association of PON2 Gene Polymorphisms (Ser311Cys and Ala148Gly) With the Risk of Developing Type 2 Diabetes Mellitus in the Chinese Population. Front Endocrinol (Lausanne) 2018; 9:495. [PMID: 30210454 PMCID: PMC6119711 DOI: 10.3389/fendo.2018.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background: The association between paraoxonase 2 (PON2) gene polymorphisms and type 2 diabetes mellitus (T2DM) has been extensively investigated in the Chinese population with conflicting results. In this study, we systematically evaluated the association between PON2 Ser311Cys and Ala148Gly polymorphisms and T2DM risk by pooling all relevant studies. Methods: We searched PubMed, Embase, CNKI, and Wanfang databases for the studies. The strength of association was determined by the allelic, homozygous, heterozygous, recessive, and dominant genetic models and measured as odds ratio (OR) and 95% confidence interval (CI), under fixed- or random-effect models. Results: There was no significant association between PON2 Ser311Cys polymorphism and T2DM under any of the genetic models: allelic (OR = 1.06, 95% CI = 0.77-1.45; P = 0.721), heterozygous (OR = 1.13, 95% CI = 0.87-1.45; P = 0.362), dominant (OR = 1.10, 95% CI = 0.80-1.51; P = 0.562), recessive (OR = 0.87, 95% CI = 0.48-1.58; P = 0.648), homozygous (OR = 0.94, 95% CI = 0.47-1.89; P = 0.865). Similarly, no significant association was found in PON2 Arg148Gly polymorphism under any of the models: allelic (OR = 1.17, 95% CI = 0.91-1.50; P = 0.218), heterozygous (OR = 1.28, 95% CI = 0.94-1.74; P = 0.117), dominant (OR = 1.25, 95% CI = 0.93-1.67; P = 0.142), recessive (OR = 0.99, 95% CI = 0.52-1.88; P = 0.973), homozygous (OR = 1.08, 95% CI = 0.57-2.07; P = 0.808). Conclusions: The PON2 Ser311Cys and Ala148Gly polymorphisms were not associated with the risk of developing T2DM in the Chinese population.
Collapse
Affiliation(s)
- Huan Ren
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mou-Ze Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Hoan L. Banh
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Family Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jian-Quan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
16
|
Pappa KI, Gazouli M, Anastasiou E, Loutradis D, Anagnou NP. The Q192R polymorphism of the paraoxonase-1 (PON1) gene is associated with susceptibility to gestational diabetes mellitus in the Greek population. Gynecol Endocrinol 2017; 33:617-620. [PMID: 28347194 DOI: 10.1080/09513590.2017.1302419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A key factor protecting from oxidative stress in gestational diabetes mellitus (GDM) and in type 2 diabetes (T2D) is paraoxonase-1 (PON1). Inconclusive and limited data exist regarding the effect of a coding polymorphism (Q192R) of the PON1 gene in conferring susceptibility to both states. In the present study, we investigated the association between the PON1 gene and the risk for GDM in the Greek population and assessed for the first time its transcriptional efficiency. We studied 185 women with GDM and 104 non-diabetic controls for the PON1 polymorphism. For PON1 mRNA expression, peripheral leucocytes were harvested from 20 GDM and 20 control women, harboring different genotypes for the polymorphism, using real-time quantitative PCR. The RR genotype and the R allele of the PON1 Q192R polymorphism were significantly associated with an increased risk for GDM (p = 0.012 and p < 0.0001, respectively). Furthermore, there was no statistical correlation between the individual metabolic parameters tested and the three genotypes. Finally, the expression levels of PON1 mRNA in GDM patients did not exhibit any statistical difference compared with normal controls (p = 0.138). These data independently document that the Q192R polymorphism is closely associated with GDM susceptibility, while the PON1 gene expression is not impaired in GDM.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- a First Department of Obstetrics and Gynecology, University of Athens School of Medicine , Athens , Greece
- b Department of Basic Medical Sciences , Laboratory of Biology, University of Athens School of Medicine and Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens , Athens , Greece , and
| | - Maria Gazouli
- b Department of Basic Medical Sciences , Laboratory of Biology, University of Athens School of Medicine and Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens , Athens , Greece , and
| | - Eleni Anastasiou
- c Department of Internal Medicine , First Endocrine Section and Diabetes Centre, Alexandra Hospital , Athens , Greece
| | - Dimitrios Loutradis
- a First Department of Obstetrics and Gynecology, University of Athens School of Medicine , Athens , Greece
| | - Nicholas P Anagnou
- b Department of Basic Medical Sciences , Laboratory of Biology, University of Athens School of Medicine and Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens , Athens , Greece , and
| |
Collapse
|