1
|
Maurice T. Bi-phasic dose response in the preclinical and clinical developments of sigma-1 receptor ligands for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2021; 16:373-389. [PMID: 33070647 DOI: 10.1080/17460441.2021.1838483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Introduction: The sigma-1 receptor (S1R) is attracting much attention for disease-modifying therapies in neurodegenerative diseases. It is a conserved protein, present in plasma and endoplasmic reticulum (ER) membranes and enriched in mitochondria-associated ER membranes (MAMs). It modulates ER-mitochondria Ca2+ transfer and ER stress pathways. Mitochondrial and MAM dysfunctions contribute to neurodegenerative processes in diseases such as Alzheimer, Parkinson, Huntington or Amyotrophic Lateral Sclerosis. Interestingly, the S1R can be activated by small druggable molecules and accumulating preclinical data suggest that S1R agonists are effective protectants in these neurodegenerative diseases.Area covered: In this review, we will present the data showing the high therapeutic potential of S1R drugs for the treatment of neurodegenerative diseases, focusing on pridopidine as a potent and selective S1R agonist under clinical development. Of particular interest is the bi-phasic (bell-shaped) dose-response effect, representing a common feature of all S1R agonists and described in numerous preclinical models in vitro, in vivo and in clinical trials.Expert opinion: S1R agonists modulate inter-organelles communication altered in neurodegenerative diseases and activate intracellular survival pathways. Research will continue growing in the future. The particular cellular nature of this chaperone protein must be better understood to facilitate the clinical developement of promising molecules.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| |
Collapse
|
2
|
Crouzier L, Couly S, Roques C, Peter C, Belkhiter R, Arguel Jacquemin M, Bonetto A, Delprat B, Maurice T. Sigma-1 (σ 1) receptor activity is necessary for physiological brain plasticity in mice. Eur Neuropsychopharmacol 2020; 39:29-45. [PMID: 32893057 DOI: 10.1016/j.euroneuro.2020.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Simon Couly
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Chloé Roques
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Coralie Peter
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Anna Bonetto
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
| |
Collapse
|
3
|
Lambert MW. Cytoskeletal and nucleoskeletal interacting protein networks play critical roles in cellular function and dysfunction. Exp Biol Med (Maywood) 2019; 244:1233-1239. [PMID: 31657230 DOI: 10.1177/1535370219884875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|