1
|
Mashtoub S, Howarth GS. Emu Oil and zinc monoglycerolate independently reduce disease severity in a rat model of ulcerative colitis. Biometals 2023; 36:1331-1345. [PMID: 37402926 PMCID: PMC10684413 DOI: 10.1007/s10534-023-00521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Ulcerative colitis is characterized by colonic inflammation. Previously, Emu Oil protected the intestine against experimentally-induced inflammatory intestinal disorders. Zinc monoglycerolate (ZMG) polymer, formed by heating zinc oxide with glycerol, demonstrated anti-inflammatory and wound healing properties. We aimed to determine whether ZMG, alone or in combination with Emu Oil, could reduce acute colitis severity in rats. Male Sprague Dawley rats (n = 8/group) were orally-administered either vehicle, ZMG, Emu Oil (EO) or ZMG combined with EO (ZMG/EO) daily. Rats were provided ad libitum access to drinking water (Groups 1-4) or dextran sulphate sodium (DSS; 2%w/v; Groups 5-8) throughout the trial (days 0-5) before euthanasia on day 6. Disease activity index, crypt depth, degranulated mast cells (DMCs) and myeloperoxidase (MPO) activity were assessed. p < 0.05 was considered significant. DSS increased disease severity (days 3-6) compared to normal controls (p < 0.05). Importantly, in DSS-administered rats, ZMG/EO (day 3) and ZMG (day 6) reduced disease activity index compared to controls (p < 0.05). Following DSS consumption, distal colonic crypts lengthened (p < 0.01), occurring to a greater extent with EO compared to ZMG and ZMG/EO (p < 0.001). DSS increased colonic DMC numbers compared to normal controls (p < 0.001); an effect decreased only by EO (p < 0.05). Colonic MPO activity increased following DSS consumption (p < 0.05); notably, ZMG, EO and ZMG/EO treatments decreased MPO activity compared to DSS controls (p < 0.001). EO, ZMG and ZMG/EO did not impact any parameter in normal animals. Emu Oil and ZMG independently decreased selected indicators of colitic disease severity in rats; however, the combination did not reveal any additional benefit.
Collapse
Affiliation(s)
- Suzanne Mashtoub
- Department of Gastroenterology, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia.
- School of Medicine, The University of Western Australia, Perth, WA, Australia.
| | - Gordon S Howarth
- Department of Gastroenterology, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide Roseworthy Campus, Roseworthy, SA, Australia
| |
Collapse
|
2
|
Zhou Y, Wang D, Duan H, Zhou S, Guo J, Yan W. The Potential of Natural Oils to Improve Inflammatory Bowel Disease. Nutrients 2023; 15:nu15112606. [PMID: 37299569 DOI: 10.3390/nu15112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory disorder that includes ulcerative colitis (UC) and Crohn's disease (CD), the exact cause of which is still unknown. Numerous studies have confirmed that diet is one of the major environmental factors associated with IBD, as it can regulate the gut microbiota and reduce inflammation and oxidative stress. Since the consumption of oil is essential in the diet, improving IBD through oil has potential. In this article, we first briefly reviewed the current treatment methods for IBD and introduce the role of natural oils in improving inflammatory diseases. We then focused on the recent discovery of the role of natural oils in the prevention and treatment of IBD and summarized their main mechanisms of action. The results showed that the anti-inflammatory activity of oils derived from different plants and animals has been validated in various experimental animal models. These oils are capable of improving the intestinal homeostasis in IBD animal models through multiple mechanisms, including modulation of the gut microbiota, protection of the intestinal barrier, reduction in colonic inflammation, improvement in oxidative stress levels in the intestine, and regulation of immune homeostasis. Therefore, dietary or topical use of natural oils may have potential therapeutic effects on IBD. However, currently, only a few clinical trials support the aforementioned conclusions. This review emphasized the positive effects of natural oils on IBD and encouraged more clinical trials to provide more reliable evidence on the improvement of human IBD by natural oils as functional substances.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No. 18, Xili District 3, Fatou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
3
|
Özden H, Şahin Y, Kilitçi A, Karaca G, Gömeç M, Yildiz A, Uçar C. Comparison of the healing effects of mesazaline and Ganoderma lucidum in acetic acid-induced colitis in rats. Ann Surg Treat Res 2022; 102:29-35. [PMID: 35071117 PMCID: PMC8753384 DOI: 10.4174/astr.2022.102.1.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The etiology and pathogenesis of distal colitis (DC) are poorly understood. Activation of intestinal inflammatory response may lead to intestinal tissue necrosis. Antioxidant and anti-inflammatory agents are among the treatment options. Our study aimed to compare the protective effects of mesalazine and Ganoderma lucidum in acetic acid (AA)-induced colitis in rats. Methods Twenty-four rats were randomly grouped as colitis, mesalazine, G. lucidum, and combined (G. lucidum + mesalazine) groups. DC was induced by intrarectal administration of AA. Statistical comparisons were done by using parameters including colonic tissue IL-1, IL-6, TNF-α, and CRP levels. Histopathologic changes of the samples of colonic tissue were scored as mucosal damage score and inflammatory score. A P-value of <0.05 was considered significant. Results Intrarectal administration of AA leads to increased interleukin and CRP levels. High mucosal damage and inflammatory scores were noted in colitis group animals. Single mesalazine or G. lucidum treatment produced considerably decreased tissue interleukin and CRP levels. The lowest tissue interleukin and CRP levels were noted in the combined treatment group of animals. Mucosal damage and inflammatory scores were found to be significantly low in this group of animals. Conclusion The intrarectal administration of AA results in an activation of intestinal inflammation and severe mucosal damage in colonic tissue. Single use of mesalazine and G. lucidum treatment decreases the severity of intestinal inflammatory response and mucosal damage. The healing effects of the combined treatment of mesalazine and G. lucidum seem to be more effective than that of separate use in the treatment of DC.
Collapse
Affiliation(s)
- Hüseyin Özden
- Department of General Surgery, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Yaşar Şahin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Asuman Kilitçi
- Department of Pathology, Faculty of Medicine, Ahi EvranUniversity, Kırşehir, Turkey
| | - Gökhan Karaca
- Department of General Surgery, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Muhammed Gömeç
- Department of General Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Yildiz
- Department of General Surgery, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Cahit Uçar
- Department of Internal Medicine, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
4
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|