1
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
3
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Farooq MA, Johnston APR, Trevaskis NL. Impact of nanoparticle properties on immune cell interactions in the lymph node. Acta Biomater 2024:S1742-7061(24)00758-X. [PMID: 39701340 DOI: 10.1016/j.actbio.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies. Promoting the delivery of therapeutics and vaccines to LNs can, therefore, enhance treatment efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. Several nanoparticle (NP) based delivery systems, such as polymeric NPs, lipid NPs, liposomes, micelles, and dendrimers, have been reported to enhance the delivery of therapeutics and/or vaccines to LNs. Specific uptake into the lymph following injection into tissues is highly dependent on particle properties, particularly particle size, as small molecules are more likely to be taken up by blood capillaries due to higher blood flow rates, whereas larger molecules and NPs can be specifically transported via the lymphatic vessels to LNs as the initial lymphatic capillaries are more permeable than blood capillaries. Once NPs enter LNs, particle properties also have an important influence on their disposition within the node and association with immune cells, which has significant implications for the design of vaccines and immunotherapies. This review article focuses on the impact of NP properties, such as size, surface charge and modification, and route of administration, on lymphatic uptake, retention, and interactions with immune cells in LNs. We suggest that optimizing all these factors can enhance the efficacy of vaccines or therapeutics with targets in the lymphatics and also be helpful for the rational design of vaccines. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an essential role in health and is an important treatment target site for a range of diseases. Promoting the delivery of immunotherapies and vaccines to immune cells in lymph nodes can enhance efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. One of the major approaches used to deliver therapeutics and vaccines to lymph nodes is via injection in nanoparticle delivery systems. This review aims to provide an overview of the impact of nanoparticle properties, such as size, surface charge, modification, and route of administration, on lymphatic uptake, lymph node retention, and interactions with immune cells in lymph nodes. This will inform the design of future improved nanoparticle systems for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Wang R, Li H, He S, Feng Y, Liu C, Hao K, Zhou D, Chen X, Tian H. Spatiotemporal Nano-Regulator Unleashes Anti-Tumor Immunity by Overcoming Dendritic Cell Tolerance and T Cell Exhaustion in Tumor-Draining Lymph Nodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412141. [PMID: 39663685 DOI: 10.1002/adma.202412141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/22/2024] [Indexed: 12/13/2024]
Abstract
Lymph nodes are crucial immune foci as the primary target for cancer immunotherapy. However, the anti-tumor functions of tumor-draining lymph nodes (TDLNs) are critically suppressed by tumors. Here, a novel spatiotemporal nano-regulator is presented, designed to modulate the dendritic cells (DCs) in TDLNs, establishing a supportive niche for immune surveillance. The DC-mediated nano-regulator (DNR) is established by the self-assembly of an imidazoquinoline (IMDQ) prodrug, inhibitory immune checkpoint (ICP) siRNA, and mannan (a TLR4 agonist). This unique design leverages the spatiotemporal activation of TLR4 and TLR7/8, thereby optimizing DC maturation and cytokine production. This further promotes efficient T cell priming. Simultaneously, the ICP-targeting siRNA mitigates the tolerogenic effects induced by tumor-derived factors and TLR activation, preventing T cell exhaustion. In essence, DNR facilitates potent remodeling of TDLNs and the tumor microenvironment, activating the anti-tumor immunity cascade. When combined with vaccines, DNR greatly promotes tumor regression and the establishment of long-term immunological memory.
Collapse
Affiliation(s)
- Ruonan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huixin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cong Liu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Danhua Zhou
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
6
|
Archer PA, Heiler AJ, Bourque AR, Alapan Y, Thomas SN. Different leukocyte subsets are targeted by systemic and locoregional administration despite conserved nanomaterial characteristics optimal for lymph node delivery. Biomater Sci 2024; 12:5582-5597. [PMID: 39318195 PMCID: PMC11422756 DOI: 10.1039/d4bm00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Lymph nodes (LNs) house a large proportion of the body's leukocytes. Accordingly, engineered nanomaterials are increasingly developed to direct therapeutics to LNs to enhance their efficacy. Yet while lymphatic delivery of nanomaterials to LNs upon locoregional injection has been extensively evaluated, nanomaterial delivery to LN-localized leukocytes after intravenous administration has not been systematically explored nor benchmarked. In this work, a panel of inert, fluorescent nanoscale tracers and drug delivery vehicles were utilized to interrogate intravenous versus locoregionally administered nanomaterial access to LNs and leukocyte subsets therein. Hydrodynamic size and material effects on LN accumulation extents were similar between intravenous versus intradermal injection routes. Nanomaterial distribution to various LN leukocyte subsets differed substantially with injection route, however, in a manner not proportional to total LN accumulation. While intravenously administered nanomaterials accumulated in LNs lowly compared to systemic tissues, in sharp contrast to locoregional delivery, they exhibited size-dependent but material-independent access to immune cells within the LN parenchyma, which are not easily accessed with locoregional delivery.
Collapse
Affiliation(s)
- Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander J Heiler
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alisyn R Bourque
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Purushothaman JR, Rizwanullah M. Ferulic Acid: A Comprehensive Review. Cureus 2024; 16:e68063. [PMID: 39347187 PMCID: PMC11438535 DOI: 10.7759/cureus.68063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Ferulic acid (FA), a phenolic compound abundant in the cell walls of seeds, leaves, and roots of various fruits, vegetables, cereals, and grains, is renowned for its wide range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. Despite its therapeutic potential, the clinical application of FA is hindered by challenges such as poor water solubility, limited bioavailability, rapid metabolism, and instability under physiological conditions. To address these issues, nanotechnology has emerged as a transformative approach, enhancing FA's pharmacokinetic profile. Various nanoparticle-based systems, including polymer-based and lipid-based nanoparticles, have been developed to encapsulate FA. These systems have demonstrated significant improvements in FA's solubility, stability, and bioavailability, with studies showing enhanced antioxidant activity and controlled release profiles. Further, the surface engineering of these nanoparticles provides targeted drug/phytochemical delivery potential. The targeted delivery of drugs/phytochemicals significantly enhances the therapeutic efficacy and minimizes systemic side effects. This review explores the therapeutic potential of FA, the limitations in its clinical application, and the advancements in nanoparticle-based delivery systems that are paving the way for its effective therapeutic use.
Collapse
Affiliation(s)
- Jaganathan R Purushothaman
- Department of Orthopedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Md Rizwanullah
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Bennett ZT, Huang G, Dellinger MT, Sumer BD, Gao J. Stepwise Ultra-pH-Sensitive Micelles Overcome a p Ka Barrier for Systemic Lymph Node Delivery. ACS NANO 2024; 18:16632-16647. [PMID: 38900677 DOI: 10.1021/acsnano.4c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
While local nanoparticle delivery to lymph nodes is well studied, there are few design criteria for intravenous delivery to the entire lymph node repertoire. In this study, we investigated the effect of NP pH transition on lymph node targeting by employing a series of ultra-pH-sensitive (UPS) polymeric micelles. The UPS library responds to pH thresholds (pKa 6.9, 6.2, and 5.3) over a range of physiological pH. We observed a dependence of intravenous lymph node targeting on micelle pH transition. UPS6.9 (subscript indicates pKa) shows poor lymph node delivery, while UPS5.3 delivers efficiently to lymph node sets. We investigated targeting mechanisms of UPS5.3, observing an accumulation among lymph node lymphatics and a dependence on lymph node-resident macrophages. To overcome the pH-threshold barrier, which limits UPS6.9, we rationally designed a nanoparticle coassembly of UPS6.9 with UPS5.3, called HyUPS. The HyUPS micelle retains the constitutive pH transitions of each polymer, showing stepwise responses to discrete pH thresholds. We demonstrate that HyUPS improves UPS6.9 delivery to lymph nodes, extending this platform for disease detection of lymph node metastasis.
Collapse
Affiliation(s)
- Zachary T Bennett
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Gang Huang
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael T Dellinger
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Baran D Sumer
- Department of Otolaryngology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jinming Gao
- Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Otolaryngology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
10
|
Vlasova KY, Kerr A, Pennock ND, Jozic A, Sahel DK, Gautam M, Murthy NTV, Roberts A, Ali MW, MacDonald KD, Walker J, Luxenhofer R, Sahay G. Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598497. [PMID: 38915714 PMCID: PMC11195133 DOI: 10.1101/2024.06.11.598497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We present an efficient approach for synthesizing cationic poly(ethylene imine) derivatives using the multicomponent split-Ugi reaction to rapidly create a library of complex functional ionizable lipopolymers. We synthesized a diverse library of 155 polymers, formulated them into polyplexes to establish structure-activity relationships crucial for endosomal escape and efficient transfection. After discovering a lead structure, lipopolymer-lipid hybrid nanoparticles are introduced to preferentially deliver to and elicit effective mRNA transfection in lung endothelium and immune cells, including T cells with low in vivo toxicity. The lipopolymer-lipid hybrid nanoparticles showed 300-fold improvement in systemic mRNA delivery to the lung compared to in vivo -JetPEI ® . Lipopolymer-lipid hybrid nanoparticles demonstrated efficient delivery of mRNA-based therapeutics for treatment of two different disease models. Lewis Lung cancer progression was significantly delayed after treatment with loaded IL-12 mRNA in U155@lipids after repeated i.v. administration. Systemic delivery of human CFTR (hCFTR) mRNA resulted in production of functional form of CFTR protein in the lungs. The functionality of hCFTR protein was confirmed by restoration of CFTR- mediated chloride secretion in conductive airway epithelia in CFTR knockout mice after nasal instillation of hCFTR mRNA loaded U155@lipids. We further showed that, U155@lipids nanoparticles can deliver complex CRISPR-Cas9 based RNA cargo to the lung, achieving 5.6 ± 2.4 % gene editing in lung tissue. Moreover, we demonstrated successful PD-1 gene knockout of T cells in vivo . Our results highlight a versatile delivery platform for systemic delivering of mRNA of various sizes for gene therapy for a variety of therapeutics.
Collapse
|
11
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Karpov TE, Darwish A, Mitusova K, Postovalova AS, Akhmetova DR, Vlasova OL, Shipilovskikh SA, Timin AS. Controllable synthesis of barium carbonate nano- and microparticles for SPECT and CT imaging. J Mater Chem B 2024; 12:4232-4247. [PMID: 38601990 DOI: 10.1039/d3tb02480f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The design and synthesis of nano- and microcarriers for preclinical and clinical imaging are highly attractive due to their unique features, for example, multimodal properties. However, broad translation of these carriers into clinical practice is postponed due to the unknown biological reactivity of the new components used for their synthesis. Here, we have developed microcarriers (∼2-3 μm) and nanocarriers (<200 nm) made of barium carbonate (BaCO3) for multiple imaging applications in vivo. In general, barium in the developed carriers can be used for X-ray computed tomography, and the introduction of a diagnostic isotope (99mTc) into the BaCO3 structure enables in vivo visualization using single-photon emission computed tomography. The bioimaging has shown that the radiolabeled BaCO3 nano- and microcarriers had different biodistribution profiles and tumor accumulation efficiencies after intratumoral and intravenous injections. In particular, in the case of intratumoral injection, all the types of used carriers mostly remained in the tumors (>97%). For intravenous injection, BaCO3 microcarriers were mainly localized in the lung tissues. However, BaCO3 NPs were mainly accumulated in the liver. These results were supported by ex vivo fluorescence imaging, direct radiometry, and histological analysis. The BaCO3-based micro- and nanocarriers showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. This study provides a simple strategy for the design and fabrication of the BaCO3-based carriers for the development of dual bioimaging.
Collapse
Affiliation(s)
- Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Aya Darwish
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Alisa S Postovalova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Olga L Vlasova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | | | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| |
Collapse
|
14
|
Abdallah M, Lin L, Styles IK, Mörsdorf A, Grace JL, Gracia G, Landersdorfer CB, Nowell CJ, Quinn JF, Whittaker MR, Trevaskis NL. Impact of conjugation to different lipids on the lymphatic uptake and biodistribution of brush PEG polymers. J Control Release 2024; 369:146-162. [PMID: 38513730 DOI: 10.1016/j.jconrel.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Delivery to peripheral lymphatics can be achieved following interstitial administration of nano-sized delivery systems (nanoparticles, liposomes, dendrimers etc) or molecules that hitchhike on endogenous nano-sized carriers (such as albumin). The published work concerning the hitchhiking approach has mostly focussed on the lymphatic uptake of vaccines conjugated directly to albumin binding moieties (ABMs such as lipids, Evans blue dye derivatives or peptides) and their subsequent trafficking into draining lymph nodes. The mechanisms underpinning access and transport of these constructs into lymph fluid, including potential interaction with other endogenous nanocarriers such as lipoproteins, have largely been ignored. Recently, we described a series of brush polyethylene glycol (PEG) polymers containing end terminal short-chain or medium-chain hydrocarbon tails (1C2 or 1C12, respectively), cholesterol moiety (Cho), or medium-chain or long-chain diacylglycerols (2C12 or 2C18, respectively). We evaluated the association of these materials with albumin and lipoprotein in rat plasma, and their intravenous (IV) and subcutaneous (SC) pharmacokinetic profiles. Here we fully detail the association of this suite of polymers with albumin and lipoproteins in rat lymph, which is expected to facilitate lymph transport of the materials from the SC injection site. Additionally, we characterise the thoracic lymph uptake, tissue and lymph node biodistribution of the lipidated brush PEG polymers following SC administration to thoracic lymph cannulated rats. All polymers had moderate lymphatic uptake in rats following SC dosing with the lymph uptake higher for 1C2-PEG, 2C12-PEG and 2C18-PEG (5.8%, 5.9% and 6.7% dose in lymph, respectively) compared with 1C12-PEG and Cho-PEG (both 1.5% dose in lymph). The enhanced lymph uptake of 1C2-PEG, 2C12-PEG and 2C18-PEG appeared related to their association profile with different lipoproteins. The five polymers displayed different biodistribution patterns in major organs and tissues in mice. All polymers reached immune cells deep within the inguinal lymph nodes of mice following SC dosing. The ability to access these immune cells suggests the potential of the polymers as platforms for the delivery of vaccines and immunotherapies. Future studies will focus on evaluating the lymphatic targeting and therapeutic potential of drug or vaccine-loaded polymers in pre-clinical disease models.
Collapse
Affiliation(s)
- Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lihuan Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alexander Mörsdorf
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Liu Y, Su M, Wang Y, Du Y, Wang Y, Hu N. Intervaginal space injection of photothermal chemotherapy nanoparticles for facilitating tumor targeting and improving outcomes in mice. Heliyon 2024; 10:e27408. [PMID: 38468940 PMCID: PMC10926121 DOI: 10.1016/j.heliyon.2024.e27408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Although numerous photothermal nanoparticles have been designed to improve the enhanced and permeability and retention (EPR) effect, the delivery of nanoparticles to the tumor site remains a major obstacle in cancer treatment. The interstital structure and its internal fluid that play an important role in material transmission, intercellular signal transduction, tissue morphology, immunity, tumor development, and disease diagnosis and treatment may be considered as a new route for drug delivery. Here, we prepared a nanoplatform composed of polydopamine (PDA), indocyanine green (ICG) as a photothermal agent, and paclitaxel (PTX) as a chemotherapeutic drug. The designed PDA-ICG nanoparticles displayed excellent photothermal conversion ability, with the synergistic effect of PTX, the growth of MDA-MB-231 cells was significantly suppressed with the cell viability of 6.19% in vitro. Taking advantage of bioimaging ability of ICG, tumor-targeting of the nanoparticles injected into the interstitial space was study, Compared with intravenous injection, nanoparticles better targeted the tumor based on the interstitial fluid flow in MBA-MD-231 bearing mice. Furthermore, the antitumor efficacy was studied in vivo. With the improved accumulation of PDA-ICG-PTX nanoparticles injected into the interstitial space and the synergistic effect of photothermal therapy and chemotherapy, tumor growth was inhibited without obvious side effects. These results demonstrated that interstitial space injection may be a superior administration route for tumor-targeting nanoparticles. The PDA-ICG-PTX nanoparticles delivered via the interstitial space exhibit great potential in the photothermal chemotherapy of cancers.
Collapse
Affiliation(s)
| | | | - Yinghan Wang
- Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde Medical University, Chengde, 067000, China
| | - Yilong Du
- Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde Medical University, Chengde, 067000, China
| | - Yan Wang
- Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde Medical University, Chengde, 067000, China
| | - Nan Hu
- Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde Medical University, Chengde, 067000, China
| |
Collapse
|
16
|
Wang B, Chen J, Zhang C, Zhang Q, Zhu Z, Qiu L, Yan J, Li Z, Zhu X, Zhang Y, Jiang Y. Biomimetic nanoparticles of platelet membranes carrying bFGF and VEGFA genes promote deep burn wound healing. Int Immunopharmacol 2023; 125:111164. [PMID: 37925947 DOI: 10.1016/j.intimp.2023.111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The treatment of burn wounds, especially deep burn wounds, remains a major clinical challenge. Growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) show great potential in promoting the healing of damaged tissues. This study explored wound healing following targeted delivery of bFGF and VEGFA genes into deep burn wounds through a novel platelet membrane-coated nanoparticle (PM@gene-NP) complex delivery system. METHODS First, bFGF and VEGFA genes were inserted into plasmid (pEGFP-N1) vectors. Subsequently, the assembled plasmids were loaded onto nanoparticles to form gene-loaded nanoparticle complexes, which were then wrapped with extracted platelet membrane, fully simulating the characteristics of platelets, in order to actively target sites of inflammatory damage. After administration of PM@gene-NP complexes through the tail vein of rats, a series of experiments were conducted to evaluate wound healing. RESULTS The PM@gene-NP complexes effectively targeted the burn sites. After the administration of the PM@gene-NP complexes, the rats exhibited increased blood flow in the burn wounds, which also healed faster than control groups. Histological results showed fewer inflammatory cells in the burned skin tissue after treatment. After the wounds healed, the production of hair follicles, sebaceous glands and other skin accessories in the skin tissue increased. CONCLUSION Our results showed that the PM@gene-NP complexes can effectively deliver gene therapy to the injured area, and this delivery system should be considered as a potential method for treating deep burns.
Collapse
Affiliation(s)
- Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038 Chongqing, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Ling Qiu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Xinghua Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
17
|
Taheri A, Bremmell KE, Joyce P, Prestidge CA. Battle of the milky way: Lymphatic targeted drug delivery for pathogen eradication. J Control Release 2023; 363:507-524. [PMID: 37797891 DOI: 10.1016/j.jconrel.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Many viruses, bacteria, and parasites rely on the lymphatic system for survival, replication, and dissemination. While conventional anti-infectives can combat infection-causing agents in the bloodstream, they do not reach the lymphatic system to eradicate the pathogens harboured there. This can result in ineffective drug exposure and reduce treatment effectiveness. By developing effective lymphatic delivery strategies for antiviral, antibacterial, and antiparasitic drugs, their systemic pharmacokinetics may be improved, as would their ability to reach their target pathogens within the lymphatics, thereby improving clinical outcomes in a variety of acute and chronic infections with lymphatic involvement (e.g., acquired immunodeficiency syndrome, tuberculosis, and filariasis). Here, we discuss approaches to targeting anti-infective drugs to the intestinal and dermal lymphatics, aiming to eliminate pathogen reservoirs and interfere with their survival and reproduction inside the lymphatic system. These include optimized lipophilic prodrugs and drug delivery systems that promote lymphatic transport after oral and dermal drug intake. For intestinal lymphatic delivery via the chylomicron pathway, molecules should have logP values >5 and long-chain triglyceride solubilities >50 mg/g, and for dermal lymphatic delivery via interstitial lymphatic drainage, nanoparticle formulations with particle size between 10 and 100 nm are generally preferred. Insight from this review may promote new and improved therapeutic solutions for pathogen eradication and combating infective diseases, as lymphatic system involvement in pathogen dissemination and drug resistance has been neglected compared to other pathways leading to treatment failure.
Collapse
Affiliation(s)
- Ali Taheri
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
18
|
He P, Tang H, Zheng Y, Xiong Y, Cheng H, Li J, Zhang Y, Liu G. Advances in nanomedicines for lymphatic imaging and therapy. J Nanobiotechnology 2023; 21:292. [PMID: 37620846 PMCID: PMC10463797 DOI: 10.1186/s12951-023-02022-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Lymph nodes play a pivotal role in tumor progression as key components of the lymphatic system. However, the unique physiological structure of lymph nodes has traditionally constrained the drug delivery efficiency. Excitingly, nanomedicines have shown tremendous advantages in lymph node-specific delivery, enabling distinct recognition and diagnosis of lymph nodes, and hence laying the foundation for efficient tumor therapies. In this review, we comprehensively discuss the key factors affecting the specific enrichment of nanomedicines in lymph nodes, and systematically summarize nanomedicines for precise lymph node drug delivery and therapeutic application, including the lymphatic diagnosis and treatment nanodrugs and lymph node specific imaging and identification system. Notably, we delve into the critical challenges and considerations currently facing lymphatic nanomedicines, and futher propose effective strategies to address these issues. This review encapsulates recent findings, clinical applications, and future prospects for designing effective nanocarriers for lymphatic system targeting, with potential implications for improving cancer treatment strategies.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Haitian Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
19
|
Dai Y, Yu X, Leng Y, Peng X, Wang J, Zhao Y, Chen J, Zhang Z. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles. J Nanobiotechnology 2023; 21:245. [PMID: 37528426 PMCID: PMC10391974 DOI: 10.1186/s12951-023-02026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Sentinel lymph node (SLN) metastasis is an important promoter of distant metastasis in breast cancer. Therefore, the timely diagnosis and precise treatment are crucial for patient staging and prognosis. However, the simultaneous diagnosis of metastasis and the implementation of imaging-guided SLN therapy is challenging. Here, we report a melittin-loaded and hyaluronic acid (HA)-conjugated high-density lipoprotein (HDL) mimic phospholipid scaffold nanoparticle (MLT-HA-HPPS), which dually-target to both breast cancer and its SLN and efficiently inhibit SLN metastasis in the LN metastasis model. The melittin peptide was successfully loaded onto HA-HPPS via electrostatic interactions, and MLT-HA-HPPS possesses effective cytotoxicity for breast cancer 4T1 cells. Moreover, the effective delivery of MLT-HA-HPPS from the primary tumor into SLN is monitored by NIR fluorescence imaging, which greatly benefits the prognosis and treatment of metastatic SLNs. After paracancerous administration, MLT-HA-HPPS can efficiently inhibit primary tumor growth with an inhibition rate of 81.3% and 76.5% relative to the PBS-treated control group and HA-HPPS group, respectively. More importantly, MLT-HA-HPPS can effectively inhibit the growth of the metastatic SLNs with an approximately 78.0%, 79.1%, and 64.2% decrease in SLNs weight than those in PBS, HA-HPPS, and melittin-treated mice, respectively. Taken together, the MLT-HA-HPPS may provide an encouraging theranostic of SLN drug delivery strategy to inhibit primary tumor progression and prevent SLN metastasis of breast cancer.
Collapse
Affiliation(s)
- Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Yuehong Leng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yifan Zhao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Canada
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
Pu T, Liu Y, Pei Y, Peng J, Wang Z, Du M, Liu Q, Zhong F, Zhang M, Li F, Xu C, Zhang X. NIR-II Fluorescence Imaging for the Detection and Resection of Cancerous Foci and Lymph Nodes in Early-Stage Orthotopic and Advanced-Stage Metastatic Ovarian Cancer Models. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37385963 DOI: 10.1021/acsami.3c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The high mortality rate of ovarian cancer can be primarily attributed to late diagnosis and early lymph node (LN) metastasis. The anatomically deep-located ovaries own intricate anatomical structures and lymphatic drainages that compromise the resolution and sensitivity of near-infrared first-window (NIR-I) fluorescence imaging. Reported NIR-II imaging studies of ovarian cancer focused on late-stage metastasis detection via the intraperitoneal xenograft model. However, given the significant improvement in patient survival associated with early-stage cancer detection, locating tumors that are restricted within the ovary is equally crucial. We obtained the polymer nanoparticles with bright near-infrared-II fluorescence (NIR-II NPs) by nanoprecipitation of DSPE-PEG, one of the ingredients of FDA-approved nanoparticle products, and benzobisthiadiazole, an organic NIR-II dye. The one-step synthesis and safe component lay the groundwork for its clinical translation. Benefiting from the NIR-II emission (∼1060 nm), NIR-II NPs enabled a high signal-to-noise (S/N) ratio (13.4) visualization of early-stage orthotopic ovarian tumors with NIR-II fluorescence imaging for the first time. Imaging with orthotopic xenograft allows a more accurate mimic of human ovarian cancer origin, thereby addressing the dilemma of translating existing nanoprobe preclinical research by providing the nano-bio interactions with early local tumor environments. After PEGylation, the desirable-sized probe (∼80 nm) exhibited high lymphophilicity and relatively extended circulation. NIR-II NPs maintained their accurate detection of orthotopic tumors, tumor-regional LNs, and minuscule (<1 mm) disseminated peritoneal metastases simultaneously (with S/N ratios all above 5) in mice with advanced-stage cancer in real time ∼36 h after systematic delivery. With NIR-II fluorescence guidance, we achieved accurate surgical staging in tumor-bearing mice and complete tumor removal comparable to clinical practice, which provides preclinical data for translating NIR-II fluorescence image-guided surgery.
Collapse
Affiliation(s)
- Tao Pu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yawei Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yuetian Pei
- Academy for Engineering and Technology, Fudan University, Shanghai 200438, China
| | - Jing Peng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zehua Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Qiyu Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Fangfang Zhong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Mingxing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
21
|
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. NANO-MICRO LETTERS 2023; 15:145. [PMID: 37269391 PMCID: PMC10239433 DOI: 10.1007/s40820-023-01125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
Immunotherapy has become a promising research "hotspot" in cancer treatment. "Soldier" immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.
Collapse
Affiliation(s)
- Yiming Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
22
|
He X, Deng T, Li J, Guo R, Wang Y, Li T, Zang S, Li J, Zhang L, Li M, He Q. A core-satellite micellar system against primary tumors and their lymphatic metastasis through modulation of fatty acid metabolism blockade and tumor-associated macrophages. NANOSCALE 2023; 15:8320-8336. [PMID: 37083874 DOI: 10.1039/d2nr04693h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lymph nodes (LNs) are the initial sanctuary of various metastatic tumor cells, and thus a precise lymphatic drug delivery strategy is necessary for the effective inhibition of metastasis. However, the complex biological barriers have restrained the drug delivery to tumor-draining lymph nodes (TDLNs). Metastatic tumor cells would undergo metabolic adaptation towards fatty acid oxidation (FAO) upon reaching the lipid-rich LNs. Herein, to inhibit primary tumors and their lymphatic metastasis, a core-satellite matrix metalloproteinase 2 (MMP-2) responsive micellar system was developed for sequential delivery of paclitaxel (PTX) and the metabolism-regulating drug etomoxir (ET) to tumors and TDLNs, respectively. Upon arrival at the tumor microenvironment (TME), the small satellite micelle encapsulating ET was detached from the core micelle in response to MMP-2, which not only drained to TDLNs via tumor-draining lymphatic vessels and inhibited the FAO of metastatic tumor cells, but also blocked M2-like macrophage polarization in the TME. Meanwhile, the core micelle containing PTX could largely accumulate in the TME and kill tumor cells. In an orthotopic 4T1 breast cancer model, the tumor and TDLN dual-targeted core-satellite micellar system effectively inhibited the growth of the primary tumor and alleviated immune suppression by blocking macrophage polarization. More importantly, tumor lymphatic metastasis was suppressed through FAO metabolic regulation. This strategy provides a promising approach for TDLN targeted therapy against breast cancer and its lymphatic metastasis.
Collapse
Affiliation(s)
- Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, China.
| |
Collapse
|
23
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
24
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
25
|
Cho KJ, Cho YE, Kim J. Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy. Pharmaceutics 2022; 14:2752. [PMID: 36559246 PMCID: PMC9788085 DOI: 10.3390/pharmaceutics14122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has gained significant interest as a target tissue to control cancer progress, which highlights its central role in adaptive immune response. Numerous mechanistic studies have revealed the benefits of nano-sized materials in the transport of various cargos to lymph nodes, overcoming barriers associated with lymphatic physiology. The potential of sustained drug delivery systems in improving the therapeutic index of various immune modulating agents is also being actively discussed. Herein, we aim to discuss design rationales and principles of locoregional lymphatic drug delivery systems for invigorating adaptive immune response for efficient antitumor immunotherapy and provide examples of various advanced nanoparticle- and hydrogel-based formulations.
Collapse
Affiliation(s)
- Kyeong Jin Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
26
|
Wang T, Zhang H, Qiu W, Han Y, Liu H, Li Z. Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy. Bioact Mater 2022; 16:418-432. [PMID: 35386309 PMCID: PMC8965726 DOI: 10.1016/j.bioactmat.2021.12.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM), as a very aggressive cancer of central nervous system, is very challenging to completely cure by the conventional combination of surgical resection with radiotherapy and chemotherapy. The success of emerging immunotherapy in hot tumors has attracted considerable interest for the treatment of GBM, but the unique tumor immunosuppressive microenvironment (TIME) of GBM leads to the failure of immunotherapy. Here, we show the significant improvement of the immunotherapy efficacy of GBM by modulating the TIME through novel all-in-one biomimetic nanoparticles (i.e. CS-I/J@CM NPs). The nanoparticles consist of utrasmall Cu2-x Se nanoparticles (NPs) with outstanding intrinsic properties (e.g., photo-responsive Fenton-like catalytic property for inducing immunogenic cell death (ICD) and alleviating the hypoxia of tumor), indoximod (IND, an inhibitor of indoleamine-2,3-dioxygenease in tumor), JQ1 (an inhibitor for reducing the expression of PD-L1 by tumor cells), and tumor cell membrane for improving the targeting capability and accumulation of nanoparticles in tumor. We reveal that these smart CS-I/J@CM NPs could drastically activate the immune responses through remodeling TIME of GBM by multiple functions. They could (1) increase M1-phenotype macrophages at tumor site by promoting the polarization of tumor-associated macrophages through the reactive oxygen species (ROS) and oxygen generated from the Fenton-like reaction between nanoparticles and H2O2 within tumor under NIR II irradiation; (2) decrease the infiltration of Tregs cells at tumor site through the release of IND; (3) decrease the expression of PD-L1 on tumor cells through JQ1. The notable increments of anti-tumor CD8+T cells in the tumor and memory T cells (TEM) in the spleen show excellent therapy efficacy and effectively prevent the recurrence of GBM after modulation of the TIME. This work demonstrates the modulation of TIME could be a significant strategy to improve the immunotherapy of GBM and other cold tumors.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| |
Collapse
|
27
|
Biomimetic Nanotherapeutics: Employing Nanoghosts to fight Melanoma. Eur J Pharm Biopharm 2022; 177:157-174. [PMID: 35787429 DOI: 10.1016/j.ejpb.2022.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Melanoma is a cancer of melanocytes present at the basal layer of the skin. Nanomedicine has armed us with competent platform to manage such fatal neoplastic diseases. Nevertheless, it suffers from numerous pitfalls such as rapid clearance and opsonization of surface-functionalized carriers, biocompatibility and idiopathic reactions which could be difficult to predict in the patient. Biomimetic approach, a novel step towards personalized medicine bridges these drawbacks by employing endogenous cell membranes to traverse physiological barriers. Camouflaged carriers coated with natural cell membranes possess unique characteristics such as high circulatory periods, and the absence of allogenic and xenogenic responses. Proteins residing on the cell membranes render a diverse range of utilities to the coated nanoparticles including natural efficiency to identify cellular targets, homologous targeting, reticuloendothelial system evasion, biocompatibility and reduced adverse and idiopathic effects. In the present article, we have focused on cell membrane camouflaged nanocarriers for melanoma management. We have discussed various types of biomimetic systems, their processing and coating approaches, and their characterization. We have also enumerated novel avenues in melanoma treatment and the combination of biomimetic systems with smart nanoparticulate systems with the potential to bring breakthroughs in the near future. Additionally, immunotherapy-based biomimetic systems to combat melanoma have been highlighted. Hurdles towards clinical translation and ways to overcome them have been explained in detail.
Collapse
|