1
|
Lu Z, Wang Z, Li G. High expression of CCNB2 is an independent predictive poor prognostic biomarker and correlates with immune infiltrates in breast carcinoma. Heliyon 2024; 10:e31586. [PMID: 38831807 PMCID: PMC11145498 DOI: 10.1016/j.heliyon.2024.e31586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background Cyclin B2 (CCNB2) is associated with cell cycle progression, acting as a cell cycle checkpoint in progression of G2/M transition. In many cancer patients, it has been observed that overexpression of CCNB2 enhances tumor invasiveness and leads to adverse prognosis. However, the association of CCNB2 with the tumor microenvironment remains unclear. Therefore, it is necessary to clarify the associations of CCNB2 with the immune status and prognosis of breast carcinoma (BRCA). Methods Gene expression and clinical data for BRCA were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases, followed by association analyses of CCNB2 expression with prognosis, immune cell infiltration, and immune checkpoints. This study further performed drug sensitivity analysis and constructed a prognostic nomogram for CCNB2. Results 3619 differentially expressed genes were identified in BRCA, including CCNB2 that emerged as a key gene in the network. High CCNB2 expression correlated with poor prognosis. Functional analysis demonstrated enrichment of CCNB2 co-expressed genes with the cell cycle, cancer progression, cell energy, and immune pathways. Microsatellite instability and tumor mutation burden analyses indicated CCNB2 as a candidate immunotherapy target. Tumor-infiltrating myeloid-derived suppressor cells, regulatory T cells, and T helper 2 cells were associated with CCNB2-related tumor progression and metastasis. CCNB2 expression positively correlated with immune checkpoints, indicating that high CCNB2 expression might facilitate tumor immune escape. Tumors with high CCNB2 expression showed sensitivity to phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin and cyclin-dependent kinase (CDK) 4/6 inhibitors, and the nomogram had good prognostic predictive ability for patients with BRCA. Conclusions CCNB2 may play a crucial role in tumorigenesis and serve as an independent prognostic biomarker associated with tumor microenvironment, tumor immune infiltration and immunotherapy in BRCA.
Collapse
Affiliation(s)
- Zonghong Lu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhihong Wang
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, GI Cancer Research Institute, Wuhan, Hubei, 430030, China
| | - Guodong Li
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, GI Cancer Research Institute, Wuhan, Hubei, 430030, China
| |
Collapse
|
2
|
Rao Q, Yu H, Li R, He B, Wang Y, Guo X, Zhao G, Wu F. Dihydroartemisinin inhibits angiogenesis in breast cancer via regulating VEGF and MMP-2/-9. Fundam Clin Pharmacol 2024; 38:113-125. [PMID: 37490927 DOI: 10.1111/fcp.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Dihydroartemisinin (DHA) is an artemisinin derivative known for its antimalarial properties. It has also shown potential as an anti-tumor and anti-angiogenic agent. However, its specific role in inhibiting angiogenesis in breast cancer is not well understood. OBJECTIVES We aimed to investigate the anti-angiogenesis effect of DHA on breast cancer and explore its potential as a therapeutic drug. Our objectives were to assess the impact of DHA on neovascularization induced by MDA-MB-231 cells, evaluate its effects on vessel sprout and tube-formation in vascular endothelial cells, and analyze the expression of key angiogenesis-related proteins. METHODS Using a chicken chorioallantoic membrane (CAM) model, we cultured MDA-MB-231 cells and treated them with DHA. We assessed neovascularization and cultured vascular endothelial cells with DHA-treated cell media to evaluate vessel sprout and tube-formation. Protein expression levels of VEGF, MMP-2, and MMP-9 were analyzed using Western blotting. RESULTS DHA significantly attenuated neovascularization induced by MDA-MB-231 cells. It also suppressed vessel sprout and tube-formation of HUVEC cells when exposed to DHA-treated cell media. Furthermore, DHA downregulated the expression of VEGF, MMP-2, and MMP-9 proteins. Mechanistically, DHA inhibited the phosphorylation of PI3K, AKT, ERK, and NF-κB proteins in tumor cells. CONCLUSIONS Our study provides evidence of the inhibitory effect of DHA on breast cancer angiogenesis. These findings support the potential of DHA as an anti-breast cancer drug and warrant further investigation for its therapeutic applications.
Collapse
Affiliation(s)
- Qi Rao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - He Yu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ruochan Li
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Bin He
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yuxue Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaohong Guo
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Gang Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Fenghua Wu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
4
|
Rao Q, Li R, Yu H, Xiang L, He B, Wu F, Zhao G. Effects of dihydroartemisinin combined with cisplatin on proliferation, apoptosis and migration of HepG2 cells. Oncol Lett 2022; 24:275. [PMID: 35782905 PMCID: PMC9247656 DOI: 10.3892/ol.2022.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Cisplatin (DDP) is a potent and widely applied chemotherapeutic agent. However, its clinical efficacy for the treatment of liver cancer is limited by adverse effects and the development of resistance. Combinatorial therapy may alleviate these issues. Dihydroartemisinin (DHA) is a first-generation derivative of artemisinin. The effects of DDP on liver cancer when applied in combination with DHA have not previously been studied. Therefore, the present study aimed to investigate the effects of DHA combined with DDP on HepG2 cells and their potential underlying molecular mechanisms. HepG2 cells were treated with different concentrations of DHA and/or DDP. Cell Counting Kit-8 assay was used to assess the cell viability. Cell proliferation and apoptosis were quantified using flow cytometry, acridine orange/ethidium bromide (AO/EB) fluorescent dual staining and the colony formation assay. Cell migration was quantified using the Transwell and wound healing assays. The HepG2 cell protein expression levels of Fas, Fas-associated death domain (FADD), procaspase-3, cleaved caspase-3, pro-caspase-8, cleaved caspase-8, Bax, Bcl-2, E-cadherin and N-cadherin, were detected via western blotting. Gelatin zymography was used to assess the levels of MMP-9 secreted by HepG2 cells into the supernatant. Following combined DHA and DDP treatment, the percentage of apoptotic cells was significantly increased, whereas cell proliferation and migration were significantly reduced, compared with cells treated with DDP only. DHA and DPP in combination significantly inhibited the expression of MMP-9, significantly increased the protein expression levels of Fas, FADD, Bax and E-cadherin, significantly increased the ratio of cleaved caspase-3 and cleaved caspase-8 to their precursor proteins and significantly decreased the protein expression levels of Bcl-2 and N-cadherin. The findings of the present study suggested that, DHA may confer synergistic effects with DDP in potentially promoting apoptosis and inhibiting the epithelial-mesenchymal transition for the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Rao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Ruochan Li
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - He Yu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Bin He
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fenghua Wu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
5
|
Zhang Z, Peng Y, Dang J, Liu X, Zhu D, Zhang Y, Shi Y, Fan H. Identification of key biomarkers related to epithelial-mesenchymal transition and immune infiltration in ameloblastoma using integrated bioinformatics analysis. Oral Dis 2022; 29:1657-1667. [PMID: 35226761 DOI: 10.1111/odi.14173] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aimed to elucidate the underlying mechanisms of ameloblastoma (AM) through integrated bioinformatics analysis. METHODS We downloaded two microarrays of AMs from the GEO database and identified differentially expressed genes (DEGs) by integrated bioinformatics analysis. The enrichment analysis of DEGs was conducted to characterize GO and KEGG pathways. Protein-protein interaction (PPI) network and hub genes were screened via STRING and Cytoscape. CIBERSORT algorithm was utilized to analyze immune infiltration in AMs. We also verified the diagnostic and therapeutic value of hub genes. RESULTS Overall, 776 DEGs were identified in AMs through bioinformatics analysis. The function enrichment analysis shed light on pathways involved in AMs. Subsequently, we screened six hub genes via PPI network. Furthermore, we evaluated immune infiltration in AMs and found that macrophages may be participating in the progression of AMs. The upregulated expression of FN1 was related to the macrophages M2 polarization. Finally, ROC analysis indicated that six hub genes had high diagnostic value for AMs and 11 drugs interacted with upregulated hub genes were identified by screening the DGIdb database. CONCLUSION This study revealed the underlying mechanisms of pathogenesis and biological behavior of AMs and provided candidate targets for the diagnosis and treatment of AMs.
Collapse
Affiliation(s)
- Zhao Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Ye Peng
- Department of Orthopaedics, Air Force Medical Center, PLA, Beijing, China
| | - Jingyi Dang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Xincheng Liu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Dongze Zhu
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yushen Zhang
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Yubo Shi
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| | - Hongbin Fan
- Division of Musculoskeletal Cancer Service, Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Shaanxi, China
| |
Collapse
|