1
|
Chen W, Chen X, Yao L, Feng J, Li F, Shan Y, Ren L, Zhuo C, Feng M, Zhong S, He C. A global view of altered ligand-receptor interactions in bone marrow aging based on single-cell sequencing. Comput Struct Biotechnol J 2024; 23:2754-2762. [PMID: 39050783 PMCID: PMC11267010 DOI: 10.1016/j.csbj.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Altered cell-cell communication is a hallmark of aging, but its impact on bone marrow aging remains poorly understood. Based on a common and effective pipeline and single-cell transcriptome sequencing, we detected 384,124 interactions including 2575 ligand-receptor pairs and 16 non-adherent bone marrow cell types in old and young mouse and identified a total of 5560 significantly different interactions, which were then verified by flow cytometry and quantitative real-time PCR. These differential ligand-receptor interactions exhibited enrichment for the senescence-associated secretory phenotypes. Further validation demonstrated supplementing specific extracellular ligands could modify the senescent signs of hematopoietic stem cells derived from old mouse. Our work provides an effective procedure to detect the ligand-receptor interactions based on single-cell sequencing, which contributes to understand mechanisms and provides a potential strategy for intervention of bone marrow aging.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430071, China
| | - Xin Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yao
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Feng
- School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Fengyue Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Shan
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Linli Ren
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenjian Zhuo
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Zhong
- School of Basic Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430071, China
| | - Chunjiang He
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
DeAngelo SL, Zhao L, Dziechciarz S, Shin M, Solanki S, Balia A, El-Derany MO, Castillo C, Qin Y, Das NK, Bell HN, Paulo JA, Zhang Y, Rossiter NJ, McCulla EC, He J, Talukder I, Ng BWL, Schafer ZT, Neamati N, Mancias JD, Koutmos M, Shah YM. Recharacterization of RSL3 reveals that the selenoproteome is a druggable target in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587381. [PMID: 38617233 PMCID: PMC11014488 DOI: 10.1101/2024.03.29.587381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ferroptosis is a non-apoptotic form of cell death resulting from the iron-dependent accumulation of lipid peroxides. Colorectal cancer (CRC) cells accumulate high levels of intracellular iron and reactive oxygen species (ROS) and are thus particularly sensitive to ferroptosis. The compound (S)-RSL3 ([1S,3R]-RSL3) is a commonly used ferroptosis inducing compound that is currently characterized as a selective inhibitor of the selenocysteine containing enzyme (selenoprotein) Gluathione Peroxidase 4 (GPx4), an enzyme that utilizes glutathione to directly detoxify lipid peroxides. However, through chemical controls utilizing the (R) stereoisomer of RSL3 ([1R,3R]-RSL3) that does not bind GPx4, combined with inducible genetic knockdowns of GPx4 in CRC cell lines, we revealed that GPx4 dependency does not always align with (S)-RSL3 sensitivity, questioning the current characterization of GPx4 as the central regulator of ferroptosis. Utilizing affinity pull-down mass spectrometry with chemically modified (S)-RSL3 probes we discovered that the effects of (S)-RSL3 extend far beyond GPx4 inhibition, revealing that (S)-RSL3 is a broad and non-selective inhibitor of selenoproteins. To further investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed additional chemical and genetic approaches. We found that the selenoprotein inhibitor auranofin, an FDA approved gold-salt, chemically induced oxidative cell death and ferroptosis in both in-vitro and in-vivo models of CRC. Consistent with these data, we found that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translation of selenoproteins, is essential for the in-vitro growth and xenograft survival of CRC cell lines. In summary, these findings recharacterize the mechanism of action of the most commonly used ferroptosis inducing molecule, (S)-RSL3, and reveal that broad inhibition of selenoproteins is a promising novel therapeutic angle for the treatment of CRC.
Collapse
Affiliation(s)
- Stephen L. DeAngelo
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Liang Zhao
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Sofia Dziechciarz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Myungsun Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Andrii Balia
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Yao Qin
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Nupur K. Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Hannah Noelle Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
| | - Yuezhong Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas J. Rossiter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth C. McCulla
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Indrani Talukder
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Billy Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joseph D. Mancias
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. United States
| | - Markos Koutmos
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA. United States
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Rusetskaya NY, Loginova NY, Pokrovskaya EP, Chesovskikh YS, Titova LE. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. BIOMEDITSINSKAIA KHIMIIA 2023; 69:333-352. [PMID: 38153050 DOI: 10.18097/pbmc20236906333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The review considers modern data on the mechanisms of activation and redox regulation of the NLRP3 inflammasome and gasdermins, as well as the role of selenium in these processes. Activation of the inflammasome and pyroptosis represent an evolutionarily conserved mechanism of the defense against pathogens, described for various types of cells and tissues (macrophages and monocytes, microglial cells and astrocytes, podocytes and parenchymal cells of the kidneys, periodontal tissues, osteoclasts and osteoblasts, as well as cells of the digestive and urogenital systems, etc.). Depending on the characteristics of redox regulation, the participants of NLRP3 inflammation and pyroptosis can be subdivided into 2 groups. Members of the first group block the mitochondrial electron transport chain, promote the formation of reactive oxygen species and the development of oxidative stress. This group includes granzymes, the mitochondrial antiviral signaling protein MAVS, and others. The second group includes thioredoxin interacting protein (TXNIP), erythroid-derived nuclear factor-2 (NRF2), Kelch-like ECH-associated protein 1 (Keap1), ninjurin (Ninj1), scramblase (TMEM16), inflammasome regulatory protein kinase NLRP3 (NEK7), caspase-1, gasdermins GSDM B, D and others. They have redox-sensitive domains and/or cysteine residues subjected to redox regulation, glutathionylation/deglutathionylation or other types of regulation. Suppression of oxidative stress and redox regulation of participants in NLRP3 inflammation and pyroptosis depends on the activity of the antioxidant enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TRXR), containing a selenocysteine residue Sec in the active site. The expression of GPX and TRXR is regulated by NRF2 and depends on the concentration of selenium in the blood. Selenium deficiency causes ineffective translation of the Sec UGA codon, translation termination, and, consequently, synthesis of inactive selenoproteins, which can cause various types of programmed cell death: apoptosis of nerve cells and sperm, necroptosis of erythrocyte precursors, pyroptosis of infected myeloid cells, ferroptosis of T- and B-lymphocytes, kidney and pancreatic cells. In addition, suboptimal selenium concentrations in the blood (0.86 μM or 68 μg/l or less) have a significant impact on expression of more than two hundred and fifty genes as compared to the optimal selenium concentration (1.43 μM or 113 μg/l). Based on the above, we propose to consider blood selenium concentrations as an important parameter of redox homeostasis in the cell. Suboptimal blood selenium concentrations (or selenium deficiency states) should be used for assessment of the risk of developing inflammatory processes.
Collapse
Affiliation(s)
- N Yu Rusetskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - N Yu Loginova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - E P Pokrovskaya
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - Yu S Chesovskikh
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| | - L E Titova
- V.I. Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
4
|
Madhwani KR, Sayied S, Ogata CH, Hogan CA, Lentini JM, Mallik M, Dumouchel JL, Storkebaum E, Fu D, O’Connor-Giles KM. tRNA modification enzyme-dependent redox homeostasis regulates synapse formation and memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566895. [PMID: 38014328 PMCID: PMC10680711 DOI: 10.1101/2023.11.14.566895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA modifying enzyme that methylates wobble uridines in specific tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis. Pathogenic variants in ALKBH8 have been linked to intellectual disability disorders in the human population, but the role of ALKBH8 in the nervous system is unknown. Through in vivo studies in Drosophila, we show that ALKBH8 controls oxidative stress in the brain to restrain synaptic growth and support learning and memory. ALKBH8 null animals lack wobble uridine methylation and exhibit a global reduction in protein synthesis, including a specific decrease in selenoprotein levels. Loss of ALKBH8 or independent disruption of selenoprotein synthesis results in ectopic synapse formation. Genetic expression of antioxidant enzymes fully suppresses synaptic overgrowth in ALKBH8 null animals, confirming oxidative stress as the underlying cause of dysregulation. ALKBH8 animals also exhibit associative learning and memory impairments that are reversed by pharmacological antioxidant treatment. Together, these findings demonstrate the critical role of tRNA modification in redox homeostasis in the nervous system and reveal antioxidants as a potential therapy for ALKBH8-associated intellectual disability.
Collapse
Affiliation(s)
| | - Shanzeh Sayied
- Department of Neuroscience, Brown University, Providence, RI, USA
| | | | - Caley A. Hogan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Moushami Mallik
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | | | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, NL
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Raber J, Stagaman K, Kasschau KD, Davenport C, Lopes L, Nguyen D, Torres ER, Sharpton TJ, Kisby G. Behavioral and Cognitive Performance Following Exposure to Second-Hand Smoke (SHS) from Tobacco Products Associated with Oxidative-Stress-Induced DNA Damage and Repair and Disruption of the Gut Microbiome. Genes (Basel) 2023; 14:1702. [PMID: 37761842 PMCID: PMC10531154 DOI: 10.3390/genes14091702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Exposure to second-hand Smoke (SHS) remains prevalent. The underlying mechanisms of how SHS affects the brain require elucidation. We tested the hypothesis that SHS inhalation drives changes in the gut microbiome, impacting behavioral and cognitive performance as well as neuropathology in two-month-old wild-type (WT) mice and mice expressing wild-type human tau, a genetic model pertinent to Alzheimer's disease mice, following chronic SHS exposure (10 months to ~30 mg/m3). SHS exposure impacted the composition of the gut microbiome as well as the biodiversity and evenness of the gut microbiome in a sex-dependent fashion. This variation in the composition and biodiversity of the gut microbiome is also associated with several measures of cognitive performance. These results support the hypothesis that the gut microbiome contributes to the effect of SHS exposure on cognition. The percentage of 8-OHdG-labeled cells in the CA1 region of the hippocampus was also associated with performance in the novel object recognition test, consistent with urine and serum levels of 8-OHdG serving as a biomarker of cognitive performance in humans. We also assessed the effects of SHS on the percentage of p21-labeled cells, an early cellular marker of senescence that is upregulated in bronchial cells after exposure to cigarette smoke. Nuclear staining of p21-labeled cells was more prominent in larger cells of the prefrontal cortex and CA1 hippocampal neurons of SHS-exposed mice than in sham-exposed mice, and there was a significantly greater percentage of labelled cells in the prefrontal cortex and CA1 region of the hippocampus of SHS than air-exposed mice, suggesting that exposure to SHS may result in accelerated brain aging through oxidative-stress-induced injury.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
| | - Conor Davenport
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Leilani Lopes
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Dennis Nguyen
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| | - Eileen Ruth Torres
- Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (K.S.); (K.D.K.); (T.J.S.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, OR 97355, USA; (C.D.); (L.L.); (D.N.)
| |
Collapse
|
6
|
Hackler J, Demircan K, Chillon TS, Sun Q, Geisler N, Schupp M, Renko K, Schomburg L. High throughput drug screening identifies resveratrol as suppressor of hepatic SELENOP expression. Redox Biol 2022; 59:102592. [PMID: 36586222 PMCID: PMC9816962 DOI: 10.1016/j.redox.2022.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Selenium (Se) is an essential trace element that exerts its effects mainly as the proteinogenic amino acid selenocysteine within a small set of selenoproteins. Among all family members, selenoprotein P (SELENOP) constitutes a particularly interesting protein as it serves as a biomarker and serum Se transporter from liver to privileged tissues. SELENOP expression is tightly regulated by dietary Se intake, inflammation, hypoxia and certain substances, but a systematic drug screening has hitherto not been performed. METHODS A compound library of 1861 FDA approved clinically relevant drugs was systematically screened for interfering effects on SELENOP expression in HepG2 cells using a validated ELISA method. Dilution experiments were conducted to characterize dose-responses. A most potent SELENOP inhibitor was further characterized by RNA-seq analysis to assess effect-associated biochemical pathways. RESULTS Applying a 2-fold change threshold, 236 modulators of SELENOP expression were identified. All initial hits were replicated as biological triplicates and analyzed for effects on cell viability. A set of 38 drugs suppressed SELENOP expression more than three-fold, among which were cancer drugs, immunosuppressants, anti-infectious drugs, nutritional supplements and others. Considering a 90% cell viability threshold, resveratrol, vidofludimus, and antimony potassium-tartrate were the most potent substances with suppressive effects on extracellular SELENOP concentrations. Resveratrol suppressed SELENOP levels dose-dependently in a concentration range from 0.8 μM to 50.0 μM, without affecting cell viability, along with strong effects on key genes controlling metabolic pathways and vesicle trafficking. CONCLUSION The results highlight an unexpected direct effect of the plant stilbenoid resveratrol, known for its antioxidative and health-promoting effects, on the central Se transport protein. The suppressive effects on SELENOP may increase liver Se levels and intracellular selenoprotein expression, thereby conferring additional protection to hepatocytes at the expense of systemic Se transport. Further physiological effects from this interaction require analyses in vivo and by clinical studies.
Collapse
Affiliation(s)
- Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Nino Geisler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany,German Federal Institute for Risk Assessment, Department Experimental Toxicology and ZEBET, 12277, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10115, Berlin, Germany.
| |
Collapse
|
7
|
Melendez JA. The therapeutic bionanoscience interface. Exp Biol Med (Maywood) 2022; 247:2065-2066. [PMID: 36533612 PMCID: PMC9837299 DOI: 10.1177/15353702221144090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|