1
|
Shao M, Yu H, Santhakumar V, Yu J. Antiepileptogenic and neuroprotective effect of mefloquine after experimental status epilepticus. Epilepsy Res 2023; 198:107257. [PMID: 37989006 DOI: 10.1016/j.eplepsyres.2023.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.
Collapse
Affiliation(s)
- Mingting Shao
- Department of Neurosurgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hang Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jiandong Yu
- Department of Neurosurgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
2
|
Henshall DC, Arzimanoglou A, Dedeurwaerdere S, Guerrini R, Jozwiak S, Kokaia M, Lerche H, Pitkänen A, Ryvlin P, Simonato M, Sisodiya SM. Shaping the future of European epilepsy research: Final meeting report from EPICLUSTER. Epilepsy Res 2023; 189:107068. [PMID: 36549242 DOI: 10.1016/j.eplepsyres.2022.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Collaboration is essential to the conduct of basic, applied and clinical research and its translation into the technologies and treatments urgently needed to improve the lives of people living with brain diseases and the health professionals who care for them. EPICLUSTER was formed in 2019 by the European Brain Research Area (EBRA) to support the coordination of epilepsy research in Europe. A key objective was to provide a platform to discuss shared research priorities by bringing together scientists and clinicians with multiple stakeholders including patient organisations and industry and the networks and infrastructures that provide healthcare and support research. Additional objectives were to facilitate access and sharing of data and biosamples, working together to ensure epilepsy is a priority for research funding, and embedding a culture of public and patient involvement (PPI) among epilepsy researchers. In this meeting report, we summarise the shared research priorities discussed by the leadership of EPICLUSTER at the recent final meeting. We also briefly review the discussion on patient and industry priorities, guidance on starting PPI for epilepsy researchers, and the sustainability of funding and infrastructures needed to ensure a comprehensive stakeholder-embedded community for epilepsy research.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics and FutureNeuro SFI Centre, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin D02 YN77, Ireland.
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospital of Lyon-HCL, Coordinator of the ERN EpiCARE, Lyon, France and Epilepsy Research Unit, Children's Hospital Sant Joan de Déu, Member of the ERN EpiCARE, Universitat de Barcelona, Barcelona, Spain
| | | | - Renzo Guerrini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Sergiusz Jozwiak
- The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University, Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, FIN-70 211, Kuopio, Finland
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Champ de l'Air Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Division of Neuroscience, San Raffaele Hospital, Via Olgettina 58, 20132 Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 1PJ, United Kingdom
| |
Collapse
|
3
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
4
|
Kustova AO, Gavrish MS, Sergeeva MA, Avlasenko DA, Kiseleva AO, Epifanova EA, Babaev AA, Mishchenko TA, Vedunova MV. The Influence of Neurotrophic Factors BDNF and GDNF Overexpression on the Functional State of Mice and Their Adaptation to Audiogenic Seizures. Brain Sci 2022; 12:1039. [PMID: 36009102 PMCID: PMC9405786 DOI: 10.3390/brainsci12081039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
The high prevalence of diagnosed cases of severe neurological disorders, a significant proportion of which are epilepsy, contributes to a high level of mortality and disability in the population. Neurotrophic factors BDNF and GNDF are considered promising agents aimed at increasing the central nervous system's adaptive potential for the development of the epileptiform activity. Despite the pronounced neuroprotective and anticonvulsant potential, an appropriate way to stimulate these endogenous signaling molecules with minimal risk of side effects remains an open question. Herein, we assessed the safety of gene therapy using original adeno-associated viral constructs carrying the genes of neurotrophic factors BDNF and GDNF in the early postnatal period of development of experimental animals. The intraventricular injection of AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs into newborn mice was found to provide persistent overexpression of target genes in the hippocampus and cerebral cortex in vivo for four weeks after injection. The application of viral constructs has a multidirectional effect on the weight and body length characteristics of mice in the early postnatal period; however, it ensures the animals' resistance to the development of seizure activity under audiogenic stimulation in the late postnatal period and preserves basic behavioral reactions, emotional status, as well as the mnestic and cognitive abilities of mice after simulated stress. Our results demonstrated the safety of using the AAV-Syn-BDNF-eGFP and AAV-Syn-GDNF-eGFP viral constructs in vivo, which indicates the expediency of further testing the constructs as therapeutic anticonvulsants.
Collapse
Affiliation(s)
- Angelina O. Kustova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria S. Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Marina A. Sergeeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Daria A. Avlasenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Anna O. Kiseleva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ekaterina A. Epifanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexey A. Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Marsh ED, Whittemore V, Leenders M, Poduri A. The 2021 Epilepsy Research Benchmarks-Respecting Core Principles, Reflecting Evolving Community Priorities. Epilepsy Curr 2021; 21:389-393. [PMID: 34924844 PMCID: PMC8655257 DOI: 10.1177/15357597211023712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eric D. Marsh
- Division of Neurology, Children’s
Hospital of Philadelphia, and Departments of Neurology and Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA, USA
- Eric D. Marsh, Neurology
and Pediatrics, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd,
Philadelphia, PA 19104-4399, USA.
| | - Vicky Whittemore
- National Institute of Neurological
Disorders and Stroke, National Institutes of
Health, Bethesda, MD, USA
| | - Miriam Leenders
- National Institute of Neurological
Disorders and Stroke, National Institutes of
Health, Bethesda, MD, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program,
Department of Neurology, Boston Children’s
Hospital, Boston, MA, USA
| | | |
Collapse
|
7
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
8
|
Bell LA, Wallis GJ, Wilcox KS. Reactivity and increased proliferation of NG2 cells following central nervous system infection with Theiler's murine encephalomyelitis virus. J Neuroinflammation 2020; 17:369. [PMID: 33272299 PMCID: PMC7713670 DOI: 10.1186/s12974-020-02043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neuron-glial antigen 2 (NG2) cells are a glial cell type tiled throughout the gray and white matter of the central nervous system (CNS). NG2 cells are known for their ability to differentiate into oligodendrocytes and are commonly referred to as oligodendrocyte precursor cells. However, recent investigations have begun to identify additional functions of NG2 cells in CNS health and pathology. NG2 cells form physical and functional connections with neurons and other glial cell types throughout the CNS, allowing them to monitor and respond to the neural environment. Growing evidence indicates that NG2 cells become reactive under pathological conditions, though their specific roles are only beginning to be elucidated. While reactive microglia and astrocytes are well-established contributors to neuroinflammation and the development of epilepsy following CNS infection, the dynamics of NG2 cells remain unclear. Therefore, we investigated NG2 cell reactivity in a viral-induced mouse model of temporal lobe epilepsy. METHODS C57BL6/J mice were injected intracortically with Theiler's murine encephalomyelitis virus (TMEV) or PBS. Mice were graded twice daily for seizures between 3 and 7 days post-injection (dpi). At 4 and 14 dpi, brains were fixed and stained for NG2, the microglia/macrophage marker IBA1, and the proliferation marker Ki-67. Confocal z stacks were acquired in both the hippocampus and the overlying cortex. Total field areas stained by each cell marker and total field area of colocalized pixels between NG2 and Ki67 were compared between groups. RESULTS Both NG2 cells and microglia/macrophages displayed increased immunoreactivity and reactive morphologies in the hippocampus of TMEV-injected mice. While increased immunoreactivity for IBA1 was also present in the cortex, there was no significant change in NG2 immunoreactivity in the cortex following TMEV infection. Colocalization analysis for NG2 and Ki-67 revealed a significant increase in overlap between NG2 and Ki-67 in the hippocampus of TMEV-injected mice at both time points, but no significant differences in cortex. CONCLUSIONS NG2 cells acquire a reactive phenotype and proliferate in response to TMEV infection. These results suggest that NG2 cells alter their function in response to viral encephalopathy, making them potential targets to prevent the development of epilepsy following viral infection.
Collapse
Affiliation(s)
- Laura A Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 84112, USA
| | - Glenna J Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA.
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|