Kilianski S, Beenhakker M. Suppress Globally or Seize Locally: Cortical Network Activity Explains Seizure Diversity Among
Kcnt1 Mutants.
Epilepsy Curr 2023;
23:389-391. [PMID:
38269354 PMCID:
PMC10805094 DOI:
10.1177/15357597231202671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Distinct Features of Interictal Activity Predict Seizure Localization and Burden in a Mouse Model of Childhood Epilepsy Tobin WF, Weston MC. J Neuroscience. 2023;43(27):5076-5091. doi:10.1523/JNEUROSCI.2205-22.2023 The epileptic brain is distinguished by spontaneous seizures and interictal epileptiform discharges (IEDs). Basic patterns of mesoscale brain activity outside of seizures and IEDs are also frequently disrupted in the epileptic brain and likely influence disease symptoms, but are poorly understood. We aimed to quantify how interictal brain activity differs from that in healthy individuals, and identify what features of interictal activity influence seizure occurrence in a genetic mouse model of childhood epilepsy. Neural activity across the majority of the dorsal cortex was monitored with widefield Ca2+ imaging in mice of both sexes expressing a human Kcnt1 variant (Kcnt1m/m ) and wild-type controls (WT). Ca2+ signals during seizures and interictal periods were classified according to their spatiotemporal features. We identified 52 spontaneous seizures, which emerged and propagated within a consistent set of susceptible cortical areas, and were predicted by a concentration of total cortical activity within the emergence zone. Outside of seizures and IEDs, similar events were detected in Kcnt1m/m and WT mice, suggesting that the spatial structure of interictal activity is similar. However, the rate of events whose spatial profile overlapped with where seizures and IEDs emerged was increased, and the characteristic global intensity of cortical activity in individual Kcnt1m/m mice predicted their epileptic activity burden. This suggests that cortical areas with excessive interictal activity are vulnerable to seizures, but epilepsy is not an inevitable outcome. Global scaling of the intensity of cortical activity below levels found in the healthy brain may provide a natural mechanism of seizure protection.
Collapse