1
|
Delgado S, Fernandez-Trujillo MA, Houée G, Silvent J, Liu X, Corre E, Sire JY. Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir. Dev Genes Evol 2023; 233:91-106. [PMID: 37410100 DOI: 10.1007/s00427-023-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.
Collapse
Affiliation(s)
- S Delgado
- Sorbonne Université, MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, 75005, Paris, France.
| | - M A Fernandez-Trujillo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - G Houée
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CR2P (Centre de Recherche en Paléontologie - Paris), UMR 7207, Equipe Formes, Structures et Fonctions, 43 rue Buffon, 75005, Paris, France
| | - J Silvent
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - X Liu
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - E Corre
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - J Y Sire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| |
Collapse
|
2
|
Alazem O, Abramyan J. Reptile enamel matrix proteins: Selection, divergence, and functional constraint. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:136-148. [PMID: 31045323 DOI: 10.1002/jez.b.22857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/24/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
The three major enamel matrix proteins (EMPs): amelogenin (AMEL), ameloblastin (AMBN), and enamelin (ENAM), are intrinsically linked to tooth development in tetrapods. However, reptiles and mammals exhibit significant differences in dental patterning and development, potentially affecting how EMPs evolve in each group. In most reptiles, teeth are replaced continuously throughout life, while mammals have reduced replacement to only one or two generations. Reptiles also form structurally simple, aprismatic enamel while mammalian enamel is composed of highly organized hydroxyapatite prisms. These differences, combined with reported low sequence homology in reptiles, led us to predict that reptiles may experience lower selection pressure on their EMPs as compared with mammals. However, we found that like mammals, reptile EMPs are under moderate purifying selection, with some differences evident between AMEL, AMBN, and ENAM. We also demonstrate that sequence homology in reptile EMPs is closely associated with divergence times, with more recently diverged lineages exhibiting high homology, along with strong phylogenetic signal. Lastly, despite sequence divergence, none of the reptile species in our study exhibited mutations consistent with diseases that cause degeneration of enamel (e.g. amelogenesis imperfecta). Despite short tooth retention time and simplicity in enamel structure, reptile EMPs still exhibit purifying selection required to form durable enamel.
Collapse
Affiliation(s)
- Omar Alazem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| |
Collapse
|
3
|
Bai C, Li Y, Yan S, Fang H, Sun B, Zhang J, Zhao Z. Identification and characterization of the cDNA sequence encoding amelogenin in rabbit (Oryctolagus cuniculus). Gene 2015; 576:770-5. [PMID: 26551300 DOI: 10.1016/j.gene.2015.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/26/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Amelogenins, the most abundant proteins in tooth enamel extracellular matrix (ECM), are essential for tooth amelogenesis. The nucleotide sequence of amelogenin gene (AMEL) for rabbit, as an important member of mammals and good continuously growing incisor model, is important for comparative and evolutional study. Previous studies about rabbit amelogenin proteins got no consensus yet even as to their existence or size. In this study, with combined usage of in silico and molecular cloning technologies, we identified sequences of two transcripts of rabbit amelogenin, resulting from the alternative splicing of the 45-bp exon 4. The coding regions of the two transcripts are of 567- and 522-bp, encoding 188 and 173 amino acids including a 17-residue signal peptide, respectively. Sequence analysis revealed that rabbit amelogenin features in extremely high GC-content in nucleotide sequence and Alanine content in protein sequence. Detailed comparison of amino acid sequence with other mammals showed that the rabbit amelogenin protein is conserved in the sites and regions important for protein functions. Overall, our results uncovered the mysteries about rabbit amelogenin and revealed its sequence peculiarities.
Collapse
Affiliation(s)
- Chunyan Bai
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Hengtong Fang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Boxing Sun
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Gasse B, Sire JY. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo 2015; 6:29. [PMID: 26421144 PMCID: PMC4587831 DOI: 10.1186/s13227-015-0024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. Results We provide the full-length cDNA sequence of A. carolinensisAMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Conclusions Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.
Collapse
Affiliation(s)
- Barbara Gasse
- UMR7138, Institut de Biologie Paris-Seine (IBPS), UPMC Univ Paris 06, Sorbonne Universités, 75005 Paris, France
| | | |
Collapse
|
5
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
6
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Shimokawa H, Uchida T. Immunohistochemical and Western blot analyses of collar enamel in the jaw teeth of gars, Lepisosteus oculatus, an actinopterygian fish. Connect Tissue Res 2014; 55:225-33. [PMID: 24611716 DOI: 10.3109/03008207.2014.902450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although most fish have no enamel layer in their teeth, those belonging to Lepisosteus (gars), an extant actinopterygian fish genus, do and so can be used to study amelogenesis. In order to examine the collar enamel matrix in gar teeth, we subjected gar teeth to light and electron microscopic immunohistochemical examinations using an antibody against bovine amelogenin (27 kDa) and antiserum against porcine amelogenin (25 kDa), as well as region-specific antibodies and antiserum against the C-terminus and middle region, and N-terminus of porcine amelogenin, respectively. The enamel matrix exhibited intense immunoreactivity to the anti-bovine amelogenin antibody and the anti-porcine amelogenin antiserum in addition to the C-terminal and middle region-specific antibodies, but not to the N-terminal-specific antiserum. These results suggest that the collar enamel matrix of gar teeth contains amelogenin-like proteins and that these proteins possess domains that closely resemble the C-terminal and middle regions of porcine amelogenin. Western blot analyses of the tooth germs of Lepisosteus were also performed. As a result, protein bands with molecular weights of 78 kDa and 65 kDa were clearly stained by the anti-bovine amelogenin antibody as well as the antiserum against porcine amelogenin and the middle-region-specific antibody. It is likely that the amelogenin-like proteins present in Lepisosteus do not correspond to the amelogenins found in mammals, although they do possess domains that are shared with mammalian amelogenins.
Collapse
|
7
|
Wang X, Xing Z, Zhang X, Zhu L, Diekwisch TGH. Alternative Splicing of the Amelogenin Gene in a Caudate Amphibian, Plethodon cinereus. PLoS One 2013; 8:e68965. [PMID: 23840861 PMCID: PMC3694012 DOI: 10.1371/journal.pone.0068965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 06/09/2013] [Indexed: 11/25/2022] Open
Abstract
As the major enamel matrix protein contributing to tooth development, amelogenin has been demonstrated to play a crucial role in tooth enamel formation. Previous studies have revealed amelogenin alternative splicing as a mechanism for amelogenin heterogeneous expression in mammals. While amelogenin and its splicing forms in mammalian vertebrates have been characterized, splicing variants of amelogenin gene still remains largely unknown in non-mammalian species. Here, using PCR and sequence analysis we discovered two novel amelogenin transcript variants in tooth organ extracts from a caudate amphibian, the salamander Plethodoncinereus. The one was shorter -S- (416 nucleotides including untranslated regions, 5 exons) and the other larger -L- (851 nt, 7 exons) than the previously published “normal” gene in this species -M- (812 nucleotides, 6 exons). This is the first report demonstrating the amelogenin alternative splicing in amphibian, revealing a unique exon 2b and two novel amelogenin gene transcripts in Plethodoncinereus.
Collapse
Affiliation(s)
- Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail:
| | - Zeli Xing
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Thomas G. H. Diekwisch
- College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Assaraf-Weill N, Gasse B, Al-Hashimi N, Delgado S, Sire JY, Davit-Béal T. Conservation of amelogenin gene expression during tetrapod evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:200-9. [PMID: 23508977 DOI: 10.1002/jez.b.22494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
Well studied in mammals, amelogenesis is less known at the molecular level in reptiles and amphibians. In the course of extensive studies of enamel matrix protein (EMP) evolution in tetrapods, we look for correlation between changes in protein sequences and temporospatial protein gene expression during amelogenesis, using an evo-devo approach. Our target is the major EMP, amelogenin (AMEL) that plays a crucial role in enamel structure. We focused here our attention to an amphibian, the salamander Pleurodeles waltl. RNAs were extracted from the lower jaws of a juvenile P. waltl and the complete AMEL sequence was obtained using PCR and RACE PCR. The alignment of P. waltl AMEL with other tetrapodan (frogs, reptiles and mammals) sequences revealed residue conservation in the N- and C-terminal regions, and a highly variable central region. Using sense and anti-sense probes synthetized from the P. waltl AMEL sequence, we performed in situ hybridization on sections during amelogenesis in larvae, juveniles, and adults. We demonstrated that (i) AMEL expression was always found to be restricted to ameloblasts, (ii) the expression pattern was conserved through ontogeny, even in larvae where enameloid is present in addition to enamel, and (iii) the processes are similar to those described in lizards and mammals. These findings indicate that high variations in the central region of AMEL have not modified its temporospatial expression during amelogenesis for 360 million years of tetrapod evolution.
Collapse
Affiliation(s)
- Nathalie Assaraf-Weill
- UMR 7138, Research Group "Evolution and Development of the Skeleton", Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Sire JY, Huang Y, Li W, Delgado S, Goldberg M, Denbesten PK. Evolutionary story of mammalian-specific amelogenin exons 4, "4b", 8, and 9. J Dent Res 2011; 91:84-9. [PMID: 21948850 DOI: 10.1177/0022034511423399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amelogenin gene organization varies from 6 exons (1,2,3,5,6,7) in amphibians and sauropsids to 10 in rodents. The additional exons are exons 4, 8, 9, and "4b", the latter being as yet unidentified in AMELX transcripts. To learn more about the evolutionary origin of these exons, we used an in silico approach to find them in 39 tetrapod genomes. AMEL organization with 6 exons was the ancestral condition. Exon 4 was created in an ancestral therian (marsupials + placentals), then exon 9 in an ancestral placental, and finally exons "4b" and 8 in rodents, after divergence of the squirrel lineage. These exons were either inactivated in some lineages or remained functional: Exon 4 is functional from artiodactyls onward; exon 9 is known, to date, only in rodents, but could be coding in various mammals; and exon "4b" was probably coding in some rodents. We performed PCR of cDNA isolated from mouse and human tooth buds to identify the presence of these transcripts. A sequence analogous to exon "4b", and to exon 9, could not be amplified from the respective tooth cDNA, indicating that even though sequences similar to these exons are present, they are not transcribed in these species.
Collapse
Affiliation(s)
- J-Y Sire
- Evolution & Développement du squelette, UMR 7138, Université Pierre et Marie Curie, 7 Quai Saint-Bernard, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:598-608. [DOI: 10.1002/jez.b.21438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|
11
|
Al-Hashimi N, Sire JY, Delgado S. Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents and primates. J Mol Evol 2010; 69:635-56. [PMID: 20012271 DOI: 10.1007/s00239-009-9302-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/06/2009] [Indexed: 12/20/2022]
Abstract
Enamelin (ENAM) plays an important role in the mineralization of the forming enamel matrix. We have performed an evolutionary analysis of mammalian ENAM to identify highly conserved residues or regions that could have important function (selective pressure), to predict mutations that could be associated with amelogenesis imperfecta in humans, and to identify possible adaptive evolution of ENAM during 200 million years ago of mammalian evolution. In order to fulfil these objectives, we obtained 36-ENAM sequences that are representative of the mammalian lineages. Our results show a remarkably high conservation pattern in the region of the 32-kDa fragment of ENAM, especially its phosphorylation, glycosylation, and proteolytic sites. In primates and rodents we also identified several sites under positive selection, which could indicate recent evolutionary changes in ENAM function. Furthermore, the analysis of the unusual signal peptide provided new insights on the possible regulation of ENAM secretion, a hypothesis that should be tested in the near future. Taken together, these findings improve our understanding of ENAM evolution and provide new information that would be useful for further investigation of ENAM function as well as for the validation of mutations leading to amelogenesis imperfecta.
Collapse
Affiliation(s)
- Nawfal Al-Hashimi
- Université Pierre et Marie Curie, UMR 7138-Systématique, Adaptation, Evolution, Case 5, 7 Quai Saint-Bernard, Bâtiment A, 4e étage, 75005, Paris, France
| | | | | |
Collapse
|
12
|
Bardet C, Delgado S, Sire JY. MEPE evolution in mammals reveals regions and residues of prime functional importance. Cell Mol Life Sci 2010; 67:305-20. [PMID: 19924383 PMCID: PMC11115541 DOI: 10.1007/s00018-009-0185-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 01/17/2023]
Abstract
In mammals, the matrix extracellular phosphoglycoprotein (MEPE) is known to activate osteogenesis and mineralization via a particular region called dentonin, and to inhibit mineralization via its ASARM (acidic serine-aspartate rich MEPE-associated motif) peptide that also plays a role in phosphatemia regulation. In order to understand MEPE evolution in mammals, and particularly that of its functional regions, we conducted an evolutionary analysis based on the study of selective pressures. Using 37 mammalian sequences we: (1) confirmed the presence of an additional coding exon in most placentals; (2) highlighted several conserved residues and regions that could have important functions; (3) found that dentonin function was recruited in a placental ancestor; and (4) revealed that ASARM function was present earlier, pushing the recruitment of MEPE deep into amniote origins. Our data indicate that MEPE was involved in various functions (bone and eggshell mineralization) prior to acquiring those currently known in placental mammals.
Collapse
Affiliation(s)
- Claire Bardet
- UMR 7138, Equipe “Evolution & Développement du Squelette” Université Paris 6, Paris, France
| | - Sidney Delgado
- UMR 7138, Equipe “Evolution & Développement du Squelette” Université Paris 6, Paris, France
| | - Jean-Yves Sire
- UMR 7138, Equipe “Evolution & Développement du Squelette” Université Paris 6, Paris, France
- UMR 7138, Université Pierre et Marie Curie-Paris 6, Case 05, 7 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
13
|
Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Dev Biol 2009; 337:171-86. [PMID: 19850027 DOI: 10.1016/j.ydbio.2009.10.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/12/2009] [Accepted: 10/12/2009] [Indexed: 11/23/2022]
Abstract
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.
Collapse
|
14
|
Sire JY, Delgado SC, Girondot M. Hen's teeth with enamel cap: from dream to impossibility. BMC Evol Biol 2008; 8:246. [PMID: 18775069 PMCID: PMC2542379 DOI: 10.1186/1471-2148-8-246] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 09/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to form teeth was lost in an ancestor of all modern birds, approximately 100-80 million years ago. However, experiments in chicken have revealed that the oral epithelium can respond to inductive signals from mouse mesenchyme, leading to reactivation of the odontogenic pathway. Recently, tooth germs similar to crocodile rudimentary teeth were found in a chicken mutant. These "chicken teeth" did not develop further, but the question remains whether functional teeth with enamel cap would have been obtained if the experiments had been carried out over a longer time period or if the chicken mutants had survived. The next odontogenetic step would have been tooth differentiation, involving deposition of dental proteins. RESULTS Using bioinformatics, we assessed the fate of the four dental proteins thought to be specific to enamel (amelogenin, AMEL; ameloblastin, AMBN; enamelin, ENAM) and to dentin (dentin sialophosphoprotein, DSPP) in the chicken genome. Conservation of gene synteny in amniotes allowed definition of target DNA regions in which we searched for sequence similarity. We found the full-length chicken AMEL and the only N-terminal region of DSPP, and both are invalidated genes. AMBN and ENAM disappeared after chromosomal rearrangements occurred in the candidate region in a bird ancestor. CONCLUSION These findings not only imply that functional teeth with enamel covering, as present in ancestral Aves, will never be obtained in birds, but they also indicate that these four protein genes were dental specific, at least in the last toothed ancestor of modern birds, a specificity which has been questioned in recent years.
Collapse
Affiliation(s)
- Jean-Yves Sire
- Université Pierre & Marie Curie-Paris 6, UMR 7138 Systématique, Adaptation, Evolution, 7 quai St-Bernard, 75005, Paris, France.
| | | | | |
Collapse
|
15
|
Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Dev Biol 2008; 319:132-45. [DOI: 10.1016/j.ydbio.2008.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 11/21/2022]
|
16
|
Sire JY, Davit-Béal T, Delgado S, Gu X. The Origin and Evolution of Enamel Mineralization Genes. Cells Tissues Organs 2007; 186:25-48. [PMID: 17627117 DOI: 10.1159/000102679] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Enamel and enameloid were identified in early jawless vertebrates, about 500 million years ago (MYA). This suggests that enamel matrix proteins (EMPs) have at least the same age. We review the current data on the origin, evolution and relationships of enamel mineralization genes. METHODS AND RESULTS Three EMPs are secreted by ameloblasts during enamel formation: amelogenin (AMEL), ameloblastin (AMBN) and enamelin (ENAM). Recently, two new genes, amelotin (AMTN) and odontogenic ameloblast associated (ODAM), were found to be expressed by ameloblasts during maturation, increasing the group of ameloblast-secreted proteins to five members. The evolutionary analysis of these five genes indicates that they are related: AMEL is derived from AMBN, AMTN and ODAM are sister genes, and all are derived from ENAM. Using molecular dating, we showed that AMBN/AMEL duplication occurred >600 MYA. The large sequence dataset available for mammals and reptiles was used to study AMEL evolution. In the N- and C-terminal regions, numerous residues were unchanged during >200 million years, suggesting that they are important for the proper function of the protein. CONCLUSION The evolutionary analysis of AMEL led to propose a dataset that will be useful to validate AMEL mutations leading to X- linked AI.
Collapse
Affiliation(s)
- Jean-Yves Sire
- UMR 7138, Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | | | | | |
Collapse
|
17
|
Gibson CW, Yuan ZA, Li Y, Daly B, Suggs C, Aragon MA, Alawi F, Kulkarni AB, Wright JT. Transgenic mice that express normal and mutated amelogenins. J Dent Res 2007; 86:331-5. [PMID: 17384027 DOI: 10.1177/154405910708600406] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amelogenin proteins are secreted by ameloblasts within the enamel organ during tooth development. To better understand the function of the 180-amino-acid amelogenin (M180), and to test the hypothesis that a single proline-to-threonine (P70T) change would lead to an enamel defect similar to amelogenesis imperfecta (AI) in humans, we generated transgenic mice with expression of M180, or M180 with the proline-to-threonine (P70T) mutation, under control of the Amelx gene regulatory regions. M180 teeth had a relatively normal phenotype; however, P70T mineral was abnormally porous, with aprismatic regions similar to those in enamel of male amelogenesis imperfecta patients with an identical mutation. When Amelx null females were mated with P70T transgenic males, offspring developed structures similar to calcifying epithelial odontogenic tumors in humans. The phenotype argues for dominant-negative activity for the P70T amelogenin, and for the robust nature of the process of amelogenesis.
Collapse
Affiliation(s)
- C W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Delgado S, Ishiyama M, Sire JY. Validation of amelogenesis imperfecta inferred from amelogenin evolution. J Dent Res 2007; 86:326-30. [PMID: 17384026 DOI: 10.1177/154405910708600405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We used the evolutionary analysis of amelogenin (AMEL) in 80 amniotes (52 mammalian and 28 reptilian sequences) to aid in the genetic diagnosis of X-linked amelogenesis imperfecta (AIH1). Out of 191 residues, 77 were found to be unchanged in mammals, and only 34 in amniotes. The latter are considered crucial residues for enamel formation, while the 43 residues conserved only in mammals could indicate that they play new, important roles for enamel formation in this lineage. The 5 substitutions leading to AIH1 were validated when the mammalian dataset was used, and 4 of them with the amniote dataset. These 2 sequence datasets will facilitate the validation of any human AMEL mutation suspected of involvement in AIH1. This evolutionary analysis also revealed numerous residues that appeared to be important for correct AMEL function, but their role remains to be elucidated.
Collapse
Affiliation(s)
- S Delgado
- UMR 7138, Equipe "Evolution & Développement du Squelette", Université Paris 6, Case 05, 7 quai St-Bernard, 75005 Paris, France
| | | | | |
Collapse
|
19
|
Davit-Béal T, Chisaka H, Delgado S, Sire JY. Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biol Rev Camb Philos Soc 2007; 82:49-81. [PMID: 17313524 DOI: 10.1111/j.1469-185x.2006.00003.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life (=polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development.
Collapse
Affiliation(s)
- Tiphaine Davit-Béal
- UMR 7138-Systématique, Adaptation, Evolution, Université Pierre & Marie Curie-Paris 6 Case 7077, 7 Quai St-Bernard, Paris 75005, France
| | | | | | | |
Collapse
|
20
|
Davit-Béal T, Allizard F, Sire JY. Enameloid/enamel transition through successive tooth replacements in Pleurodeles waltl (Lissamphibia, Caudata). Cell Tissue Res 2006; 328:167-83. [PMID: 17180599 DOI: 10.1007/s00441-006-0306-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 07/13/2006] [Indexed: 10/23/2022]
Abstract
Study of the evolutionary enameloid/enamel transition suffers from discontinuous data in the fossil record, although a developmental enameloid/enamel transition exists in living caudates, salamanders and newts. The timing and manner in which the enameloid/enamel transition is achieved during caudate ontogeny is of great interest, because the caudate situation could reflect events that have occurred during evolution. Using light and transmission electron microscopy, we have monitored the formation of the upper tooth region in six successive teeth of a tooth family (position I) in Pleurodeles waltl from late embryos to young adult. Enameloid has only been identified in embryonic tooth I(1) and in larval teeth I(2) and I(3). A thin layer of enamel is deposited later by ameloblasts on the enameloid surface of these teeth. From post-metamorphic juvenile onwards, teeth are covered with enamel only. The collagen-rich enameloid matrix is deposited by odontoblasts, which subsequently form dentin. Enameloid, like enamel, mineralizes and then matures but ameloblast participation in enameloid matrix deposition has not been established. From tooth I(1) to tooth I(3), the enameloid matrix becomes ever more dense and increasingly comes to resemble the dentin matrix, although it is still subjected to maturation. Our data suggest the absence of an enameloid/enamel transition and, instead, the occurrence of an enameloid/dentin transition, which seems to result from a progressive slowing down of odontoblast activity. As a consequence, the ameloblasts in post-metamorphic teeth appear to synthesize the enamel matrix earlier than in larval teeth.
Collapse
Affiliation(s)
- T Davit-Béal
- Equipe Evolution and Développement du Squelette, UMR 7138, Systématique, Adaptations, Evolution, UPMC-CNRS-MNHN-IRD, Université Paris 6, Paris Cedex 05, France
| | | | | |
Collapse
|
21
|
Sire JY, Delgado S, Girondot M. The amelogenin story: origin and evolution. Eur J Oral Sci 2006; 114 Suppl 1:64-77; discussion 93-5, 379-80. [PMID: 16674665 DOI: 10.1111/j.1600-0722.2006.00297.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome sequencing and gene mapping have permitted the identification of HEVIN (SPARC-Like1) as the probable ancestor of the enamel matrix proteins (EMPs), amelogenin (AMEL), ameloblastin (AMBN) and enamelin (ENAM). We have undertaken a phylogenetic analysis to elucidate their relationships. AMEL genes available in databases, and new sequences obtained in blast searching genomes or expressed sequence tags, were compiled (22 full-length sequences), aligned, and the ancestral sequence calculated and used to search for similarities using psi-blast. Hits were obtained with the N-terminal region of AMBN, ENAM, and HEVIN. We retrieved all available AMBN (n=8), ENAM (n=3), and HEVIN (n=4) sequences. The sequences of the four proteins were aligned and analyzed phylogenetically. AMEL and AMBN are sister genes, which diverged after duplication of a common ancestor issued from ENAM. The latter derived from a copy of HEVIN. Comparisons of gene organization, amino acid sequences and location of ENAM and AMBN, adjacent on the same chromosome, suggest that AMBN is closer to ENAM than AMEL. This supports AMEL as being derived from AMBN duplication. This duplication occurred long before tetrapod differentiation, probably in an ancestral osteichthyan. The story of AMEL origin is completed as follows: SPARC-->HEVIN-->ENAM-->AMBN-->AMEL.
Collapse
Affiliation(s)
- Jean-Yves Sire
- Equipe Evolution & Développement du Squelette, UMR7138 Systématique, Adaptation, Evolution- CNRS, Université Pierre & Marie Curie, MNHN, IRD, ENS - Paris, France.
| | | | | |
Collapse
|