1
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
2
|
Komatsu K, Matsuura T, Cheng J, Kido D, Park W, Ogawa T. Nanofeatured surfaces in dental implants: contemporary insights and impending challenges. Int J Implant Dent 2024; 10:34. [PMID: 38963524 PMCID: PMC11224214 DOI: 10.1186/s40729-024-00550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, USA
| | - Daisuke Kido
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
3
|
Park G, Matsuura T, Komatsu K, Ogawa T. Optimizing implant osseointegration, soft tissue responses, and bacterial inhibition: A comprehensive narrative review on the multifaceted approach of the UV photofunctionalization of titanium. J Prosthodont Res 2024:JPR_D_24_00086. [PMID: 38853001 DOI: 10.2186/jpr.jpr_d_24_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
Collapse
Affiliation(s)
- Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
4
|
Komatsu K, Matsuura T, Suzumura T, Ogawa T. Genome-wide transcriptional responses of osteoblasts to different titanium surface topographies. Mater Today Bio 2023; 23:100852. [PMID: 38024842 PMCID: PMC10663851 DOI: 10.1016/j.mtbio.2023.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
This is the first genome-wide transcriptional profiling study using RNA-sequencing to investigate osteoblast responses to different titanium surface topographies, specifically between machined, smooth and acid-etched, microrough surfaces. Rat femoral osteoblasts were cultured on machine-smooth and acid-etched microrough titanium disks. The culture system was validated through a series of assays confirming reduced osteoblast attachment, slower proliferation, and faster differentiation on microrough surfaces. RNA-sequencing analysis of osteoblasts at an early stage of culture revealed that gene expression was highly correlated (r = 0.975) between the two topographies, but 1.38 % genes were upregulated and 0.37 % were downregulated on microrough surfaces. Upregulated transcripts were enriched for immune system, plasma membrane, response to external stimulus, and positive regulation to stimulus processes. Structural mapping confirmed microrough surface-promoted gene sharing and networking in signaling pathways and immune system/responses. Target-specific pathway analysis revealed that Rho family G-protein signaling pathways and actin genes, responsible for the formation of stress fibers, cytoplasmic projections, and focal adhesion, were upregulated on microrough surfaces without upregulation of core genes triggered by cell-to-cell interactions. Furthermore, disulfide-linked or -targeted extracellular matrix (ECM) or membranous glycoproteins such as laminin, fibronectin, CD36, and thrombospondin were highly expressed on microrough surfaces. Finally, proliferating cell nuclear antigen (PCNA) and cyclin D1, whose co-expression reduces cell proliferation, were upregulated on microrough surfaces. Thus, osteoblasts on microrough surfaces were characterized by upregulation of genes related to a wide range of functions associated with the immune system, stress/stimulus responses, proliferation control, skeletal and cytoplasmic signaling, ECM-integrin receptor interactions, and ECM-membranous glycoprotein interactions, furthering our knowledge of the surface-dependent expression of osteoblastic biomarkers on titanium.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K, Ogawa T. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res 2023; 67:568-582. [PMID: 36543189 DOI: 10.2186/jpr.jpr_d_22_00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE We examined blood and protein dynamics potentially influenced by implant threads and hydrophilic/hydrophobic states of implant surfaces. METHODS A computational fluid dynamics model was created for a screw-shaped implant with a water contact angle of 70° (hydrophobic surface) and 0° (superhydrophilic surface). Movements and density of blood and fibrinogen as a representative wound healing protein were visualized and quantified during constant blood inflow. RESULTS Blood plasma did not occupy 40-50% of the implant interface or the inside of threads around hydrophobic implants, whereas such blood voids were nearly completely eliminated around superhydrophilic implants. Whole blood field vectors were disorganized and random within hydrophobic threads but formed vortex nodes surrounded by stable blood streams along the superhydrophilic implant surface. The averaged vector within threads was away from the implant surface for the hydrophobic implant and towards the implant surface for the superhydrophilic implant. Rapid and massive whole blood influx into the thread zone was only seen for the superhydrophilic implant, whereas a line of conflicting vectors formed at the entrance of the thread area of the hydrophobic implant to prevent blood influx. The fibrinogen density was up to 20-times greater at the superhydrophilic implant interface than the hydrophobic one. Fibrinogen density was higher at the interface than outside the threads only for the superhydrophilic implant. CONCLUSIONS Implant threads and surface hydrophilicity have profound effects on vector and distribution of blood and proteins. Critically, implant threads formed significant biological voids at the interface that were negated by superhydrophilicity-induced contact hemodynamics.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, Yokohama, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
6
|
Kitajima H, Hirota M, Osawa K, Iwai T, Mitsudo K, Saruta J, Ogawa T. The Effects of a Biomimetic Hybrid Meso- and Nano-Scale Surface Topography on Blood and Protein Recruitment in a Computational Fluid Dynamics Implant Model. Biomimetics (Basel) 2023; 8:376. [PMID: 37622981 PMCID: PMC10452410 DOI: 10.3390/biomimetics8040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms underlying bone-implant integration, or osseointegration, are still incompletely understood, in particular how blood and proteins are recruited to implant surfaces. The objective of this study was to visualize and quantify the flow of blood and the model protein fibrinogen using a computational fluid dynamics (CFD) implant model. Implants with screws were designed with three different surface topographies: (1) amorphous, (2) nano-trabecular, and (3) hybrid meso-spikes and nano-trabeculae. The implant with nano-topography recruited more blood and fibrinogen to the implant interface than the amorphous implant. Implants with hybrid topography further increased recruitment, with particularly efficient recruitment from the thread area to the interface. Blood movement significantly slowed at the implant interface compared with the thread area for all implants. The blood velocity at the interface was 3- and 4-fold lower for the hybrid topography compared with the nano-topography and amorphous surfaces, respectively. Thus, this study for the first time provides insights into how different implant surfaces regulate blood dynamics and the potential advantages of surface texturization in blood and protein recruitment and retention. In particular, co-texturization with a hybrid meso- and nano-topography created the most favorable microenvironment. The established CFD model is simple, low-cost, and expected to be useful for a wide range of studies designing and optimizing implants at the macro and micro levels.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 232-0024, Japan
| | - Kohei Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (K.O.); (T.I.); (K.M.)
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Department of Education Planning, School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Japan
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA (M.H.); (J.S.)
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
7
|
Wang YN, Yu L, Wang T, Liu S. Apolipoprotein E facilitates titanium implant osseointegration by regulating osteogenesis-lipogenesis balance. Int J Biol Macromol 2023; 236:123998. [PMID: 36906203 DOI: 10.1016/j.ijbiomac.2023.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Apolipoprotein E (ApoE), a protein closely related to various metabolic diseases, is recently considered to play an essential role in bone metabolism. However, the effect and mechanism of ApoE on implant osseointegration have not been clarified. This study aims to investigate the influence of additional ApoE supplementation in regulating the osteogenesis-lipogenesis balance on bone marrow mesenchymal stem cells (BMMSCs) cultured on titanium surface, and the effect of ApoE on the osseointegration of titanium implants. In vivo, the bone volume/total volume (BV/TV) and the bone-implant contact (BIC) significantly elevated in the exogenous supplement of ApoE group, compared with the Normal group. Meanwhile, the adipocyte area proportion around the implant dramatically decreased after 4-week healing. In vitro, the additional ApoE substantially drove the osteogenic differentiation of BMMSCs cultured on the titanium surface and inhibit their lipogenic differentiation as well as lipid droplet accumulation. These results suggest that ApoE, by mediating the differentiation of stem cells on the surface of titanium with this macromolecular protein, is deeply involved in facilitating titanium implant osseointegration, which reveals the potential mechanism and proposes a promising solution for further improving the osseointegration of titanium implants.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Ting Wang
- Department of General Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Shiyue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
8
|
Suzuki O, Hamai R, Sakai S. The material design of octacalcium phosphate bone substitute: increased dissolution and osteogenecity. Acta Biomater 2023; 158:1-11. [PMID: 36581004 DOI: 10.1016/j.actbio.2022.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Octacalcium phosphate (OCP) has been advocated as a precursor of bone apatite crystals. Recent studies have shown that synthetic OCP exhibits highly osteoconductive properties as a bone substitute material that stems from its ability to activate bone tissue-related cells, such as osteoblasts, osteocytes, and osteoclasts. Accumulated experimental evidence supports the proposition that the OCP-apatite phase conversion under physiological conditions increases the stimulatory capacity of OCP. The conversion of OCP progresses by hydrolysis toward Ca-deficient hydroxyapatite with Ca2+ ion incorporation and inorganic phosphate ion release with concomitant increases in the solid Ca/P molar ratio, specific surface area, and serum protein adsorption affinity. The ionic dissolution rate during the hydrolysis reaction was controlled by introducing a high-density edge dislocation within the OCP lattice by preparing it through co-precipitation with gelatin. The enhanced dissolution intensifies the material biodegradation rate and degree of osteogenecity of OCP. Controlling the biodegradation rate relative to the dissolution acceleration may be vital for controlling the osteogenecity of OCP materials. This study investigates the effects of the ionic dissolution of OCP, focusing on the structural defects in OCP, as the enhanced metastability of the OCP phase modulates biodegradability followed by new bone formation. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP) is recognized as a highly osteoconductive material that is biodegradable by osteoclastic resorption, followed by new bone formation by osteoblasts. However, if the degradation rate of OCP is increased by maintaining the original osteoconductivity or acquiring a bioactivity better than its current properties, then early replacement with new bone can be expected. Although cell introduction or growth factor addition by scaffold materials is the standard method for tissue engineering, material activity can be augmented by introducing dislocations into the lattice of the OCP. This review article summarizes the effects of introducing structural defects on activating OCP, which was obtained by co-precipitation with gelatin, as a bone substitute material and the mechanism of improved bone replacement performance.
Collapse
Affiliation(s)
- Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Kitajima H, Hirota M, Komatsu K, Isono H, Matsuura T, Mitsudo K, Ogawa T. Ultraviolet Light Treatment of Titanium Microfiber Scaffolds Enhances Osteoblast Recruitment and Osteoconductivity in a Vertical Bone Augmentation Model: 3D UV Photofunctionalization. Cells 2022; 12:cells12010019. [PMID: 36611812 PMCID: PMC9818481 DOI: 10.3390/cells12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vertical bone augmentation to create host bone prior to implant placement is one of the most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium microfibers (20 μm diameter) and treated with UVC light (200-280 nm wavelength) emitted from a low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even and dense fiber network with 87% porosity and 20-50 mm inter-fiber distance. Surface carbon reduced from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed 4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro, four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds. In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was double that observed between bone and untreated scaffold. Morphological and chemical analysis confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Makoto Hirota
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-45-785-8438
| | - Keiji Komatsu
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takanori Matsuura
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
10
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Abd Wahab MA, Mohd Yusof E, Ahmad R, Salleh MZ, Teh LK. Peri-implant Bone Healing: Its Basic Osteogenesis and Biomarkers. NOVEMBER ISSUE 2022; 18:324-331. [DOI: 10.47836/mjmhs.18.6.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The continuous sequence of bone healing phases starts off with osteoconduction to the implant surface, depending on the migration of osteogenic cells. Osteoneogenesis ensues resulting in a mineralised interfacial matrix and is followed by bone remodelling to the implant interface at discrete sites. Dental implant drilling procedure and placement produce osseous defect which is filled by blood. Within seconds, blood proteins are adsorbed onto the implant surface and platelets are activated resulting in the release of cytokines and growth factors. Further platelet aggregation initiates osteoconduction to the surface, followed by osteoneogenesis, forming an extracellular matrix. Subsequently, remodelling creates a bone to implant interface which can be explained through distance and contact osteogenesis. The dental implant surface has been shown to influence osteoconduction by modifying protein properties and adsorption around the implant. Salivary biomarkers may be considered as a specific and sensitive diagnostic tool to detect these changes in protein expressions after implant placement. Thus, the purpose of this narrative review is to provide a detailed account of the bone healing mechanism associated with dental implant placement, as well as how the implant surface architecture and protein release play a role in bone healing, and the potential use of saliva to detect these biomarkers.
Collapse
|
12
|
Ivanovski S, Bartold PM, Huang Y. The role of foreign body response in peri-implantitis: What is the evidence? Periodontol 2000 2022; 90:176-185. [PMID: 35916872 PMCID: PMC9804527 DOI: 10.1111/prd.12456] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Historically, there has been broad consensus that osseointegration represents a homeostasis between a titanium dental implant and the surrounding bone, and that the crestal bone loss characteristic of peri-implantitis is a plaque-induced inflammatory process. However, this notion has been challenged over the past decade by proponents of a theory that considers osseointegration an inflammatory process characterized by a foreign body reaction and peri-implant bone loss as an exacerbation of this inflammatory response. A key difference in these two schools of thought is the perception of the relative importance of dental plaque in the pathogenesis of crestal bone loss around implants, with obvious implications for treatment. This review investigates the evidence for a persistent foreign body reaction at osseointegrated dental implants and its possible role in crestal bone loss characteristic of peri-implantitis. Further, the role of implant-related material release within the surrounding tissue, particularly titanium particles and corrosion by-products, in the establishment and progression in peri-implantitis is explored. While it is acknowledged that these issues require further investigation, the available evidence suggests that osseointegration is a state of homeostasis between the titanium implant and surrounding tissues, with little evidence that a persistent foreign body reaction is responsible for peri-implant bone loss after osseointegration is established. Further, there is a lack of evidence for a unidirectional causative role of corrosion by-products and titanium particles as possible non-plaque related factors in the etiology of peri-implantitis.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| | - Peter Mark Bartold
- School of DentistryUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yu‐Sheng Huang
- School of DentistryThe University of QueenslandHerstonQueenslandAustralia
| |
Collapse
|
13
|
A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin. Cells 2022; 11:cells11142158. [PMID: 35883601 PMCID: PMC9317518 DOI: 10.3390/cells11142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Delivering and retaining cells in areas of interest is an ongoing challenge in tissue engineering. Here we introduce a novel approach to fabricate osteoblast-loaded titanium suitable for cell delivery for bone integration, regeneration, and engineering. We hypothesized that titanium age influences the efficiency of protein adsorption and cell loading onto titanium surfaces. Fresh (newly machined) and 1-month-old (aged) commercial grade 4 titanium disks were prepared. Fresh titanium surfaces were hydrophilic, whereas aged surfaces were hydrophobic. Twice the amount of type 1 collagen and fibronectin adsorbed to fresh titanium surfaces than aged titanium surfaces after a short incubation period of three hours, and 2.5-times more fibronectin than collagen adsorbed regardless of titanium age. Rat bone marrow-derived osteoblasts were incubated on protein-adsorbed titanium surfaces for three hours, and osteoblast loading was most efficient on fresh titanium adsorbed with fibronectin. The number of osteoblasts loaded using this synergy between fresh titanium and fibronectin was nine times greater than that on aged titanium with no protein adsorption. The loaded cells were confirmed to be firmly attached and functional. The number of loaded cells was strongly correlated with the amount of protein adsorbed regardless of the protein type, with fibronectin simply more efficiently adsorbed on titanium surfaces than collagen. The role of surface hydrophilicity of fresh titanium surfaces in increasing protein adsorption or cell loading was unclear. The hydrophilicity of protein-adsorbed titanium increased with the amount of protein but was not the primary determinant of cell loading. In conclusion, the osteoblast loading efficiency was dependent on the age of the titanium and the amount of protein adsorption. In addition, the efficiency of protein adsorption was specific to the protein, with fibronectin being much more efficient than collagen. This is a novel strategy to effectively deliver osteoblasts ex vivo and in vivo using titanium as a vehicle.
Collapse
|
14
|
Immunomodulatory Properties and Osteogenic Activity of Polyetheretherketone Coated with Titanate Nanonetwork Structures. Int J Mol Sci 2022; 23:ijms23020612. [PMID: 35054795 PMCID: PMC8775651 DOI: 10.3390/ijms23020612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.
Collapse
|
15
|
Park S, Heo HA, Kim KW, Pyo SW. Expression of osteogenic markers after administration of selective estrogen receptor modulators during implant placement in the osteoporotic rat maxilla. J Oral Sci 2021; 64:53-58. [PMID: 34955485 DOI: 10.2334/josnusd.21-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study examined the effects of raloxifene during bone formation around the dental implant in the ovariectomy-induced osteoporotic rat maxilla. METHODS Fifty-four female 10-week-old Sprague-Dawley rats were divided into three groups (n = 18 each); sham-operated (control), ovariectomized (OVX), and ovariectomized and raloxifene-administered (RAL). Eight weeks after ovariectomy, both upper first molars were extracted, and implants were placed 4 weeks post-extraction. The RAL group was given 1 mg/kg of raloxifene per day while the other groups received a vehicle. Six rats in each group were sacrificed at days 4, 7, and 14 and submitted for quantitative reverse transcription polymerase chain reaction and immunohistochemical staining, for evaluation of osteogenic genes expressions. RESULTS The alkaline phosphatase expression was upregulated in the RAL group compared to the OVX group at day 4. The osteocalcin expression was significantly higher between the RAL group and the OVX group at day 7. Immunohistochemical staining revealed increased expression during the initial bone-forming process and indicated more active bone formation in the RAL group than in the OVX group. CONCLUSION Raloxifene administration enhanced the osteogenic genes and proteins expression in the bone around the implant. Further studies are required to establish the long-term clinical effects of raloxifene administration.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hyun A Heo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Kyoung Wook Kim
- Department of Dentistry, Graduate School, The Catholic University of Korea
| | - Sung Woon Pyo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
16
|
Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int J Mol Sci 2021; 22:ijms222212396. [PMID: 34830275 PMCID: PMC8617952 DOI: 10.3390/ijms222212396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-implantitis is an unsolved but critical problem with dental implants. It is postulated that creating a seal of gingival soft tissue around the implant neck is key to preventing peri-implantitis. The objective of this study was to determine the effect of UV surface treatment of titanium disks on the adhesion strength and retention time of oral connective tissues as well as on the adherence of mucosal fibroblasts. Titanium disks with a smooth machined surface were prepared and treated with UV light for 15 min. Keratinized mucosal tissue sections (3 × 3 mm) from rat palates were incubated for 24 h on the titanium disks. The adhered tissue sections were then mechanically detached by agitating the culture dishes. The tissue sections remained adherent for significantly longer (15.5 h) on the UV-treated disks than on the untreated control disks (7.5 h). A total of 94% of the tissue sections were adherent for 5 h or longer on the UV-treated disks, whereas only 50% of the sections remained on the control disks for 5 h. The adhesion strength of the tissue sections to the titanium disks, as measured by tensile testing, was six times greater after UV treatment. In the culture studies, mucosal fibroblasts extracted from rat palates were attached to titanium disks by incubating for 24, 48, or 96 h. The number of attached cells was consistently 15–30% greater on the UV-treated disks than on the control disks. The cells were then subjected to mechanical or chemical (trypsinization) detachment. After mechanical detachment, the residual cell rates on the UV-treated surfaces after 24 and 48 h of incubation were 35% and 25% higher, respectively, than those on the control surfaces. The remaining rate after chemical detachment was 74% on the control surface and 88% on the UV-treated surface for the cells cultured for 48 h. These trends were also confirmed in mouse embryonic fibroblasts, with an intense expression of vinculin, a focal adhesion protein, on the UV-treated disks even after detachment. The UV-treated titanium was superhydrophilic, whereas the control titanium was hydrophobic. X-ray photoelectron spectroscopy (XPS) chemical analysis revealed that the amount of carbon at the surface was significantly reduced after UV treatment, while the amount of TiOH molecules was increased. These ex vivo and in vitro results indicate that the UV treatment of titanium increases the adhesion and retention of oral mucosa connective tissue as a result of increased resistance of constituent fibroblasts against exogenous detachment, both mechanically and chemically, as well as UV-induced physicochemical changes of the titanium surface.
Collapse
|
17
|
Dentin Matrix Protein 1 on Titanium Surface Facilitates Osteogenic Differentiation of Stem Cells. Molecules 2021; 26:molecules26226756. [PMID: 34833848 PMCID: PMC8621853 DOI: 10.3390/molecules26226756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.
Collapse
|
18
|
Osteoblast Attachment Compromised by High and Low Temperature of Titanium and Its Restoration by UV Photofunctionalization. MATERIALS 2021; 14:ma14195493. [PMID: 34639891 PMCID: PMC8509491 DOI: 10.3390/ma14195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023]
Abstract
Titanium implants undergo temperature fluctuations during manufacturing, transport, and storage. However, it is unknown how this affects their bioactivity. Herein, we explored how storage (six months, dark conditions) and temperature fluctuations (5-50 °C) affected the bioactivity of titanium implants. Stored and fresh acid-etched titanium disks were exposed to different temperatures for 30 min under wet or dry conditions, and their hydrophilicity/hydrophobicity and bioactivity (using osteoblasts derived from rat bone marrow) were evaluated. Ultraviolet (UV) treatment was evaluated as a method of restoring the bioactivity. The fresh samples were superhydrophilic after holding at 5 or 25 °C under wet or dry conditions, and hydrophilic after holding at 50 °C. In contrast, all the stored samples were hydrophobic. For both fresh and stored samples, exposure to 5 or 50 °C reduced osteoblast attachment compared to holding at 25 °C under both wet and dry conditions. Regression analysis indicated that holding at 31 °C would maximize cell attachment (p < 0.05). After UV treatment, cell attachment was the same or better than that before temperature fluctuations. Overall, titanium surfaces may have lower bioactivity when the temperature fluctuates by ≥20 °C (particularly toward lower temperatures), independent of the hydrophilicity/hydrophobicity. UV treatment was effective in restoring the temperature-compromised bioactivity.
Collapse
|
19
|
Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci 2021; 22:ijms22157969. [PMID: 34360734 PMCID: PMC8347469 DOI: 10.3390/ijms22157969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 μm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200–300 nm trabecular bone-inspired interwoven structures on the entire surface. The height of the spikes was varied from 20 to 80 μm for optimization. Average roughness (Sa) increased from 0.10 μm (polished smooth surface) to 18.14 μm (80 μm-high spikes), while the surface area increased by up to 4.43 times. The measured dimensions of the spikes almost perfectly correlated with their estimated dimensions (R2 = 0.998). The dimensional error of forming the architecture was 1% as a coefficient of variation. Bone marrow-derived osteoblasts were cultured on a polished surface and on meso- and nano-scale hybrid textured surfaces with different spike heights. The osteoblastic differentiation was significantly promoted on the hybrid-textured surfaces compared with the polished surface, and among them the hybrid-textured surface with 40 μm-high spikes showed unparalleled performance. In vivo bone-implant integration also peaked when the hybrid-textured surface had 40 μm-high spikes. The relationships between the spike height and measures of osteoblast differentiation and the strength of bone and implant integration were non-linear. The controllable creation of meso- and nano-scale hybrid biomimetic surfaces established in this study may provide a novel technological platform and design strategy for future development of biomaterial surfaces to improve bone integration and regeneration.
Collapse
|
20
|
Singh S, Prakash C, Pramanik A, Basak A, Shabadi R, Królczyk G, Bogdan-Chudy M, Babbar A. Magneto-Rheological Fluid Assisted Abrasive Nanofinishing of β-Phase Ti-Nb-Ta-Zr Alloy: Parametric Appraisal and Corrosion Analysis. MATERIALS 2020; 13:ma13225156. [PMID: 33207671 PMCID: PMC7698243 DOI: 10.3390/ma13225156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
The present work explores the potential of magneto-rheological fluid assisted abrasive finishing (MRF-AF) for obtaining precise surface topography of an in-house developed β-phase Ti-Nb-Ta-Zr (TNTZ) alloy for orthopedic applications. Investigations have been made to study the influence of the concentration of carbonyl iron particles (CIP), rotational speed (Nt), and working gap (Gp) in response to material removal (MR) and surface roughness (Ra) of the finished sample using a design of experimental technique. Further, the corrosion performance of the finished samples has also been analyzed through simulated body fluid (SBF) testing. It has been found that the selected input process parameters significantly influenced the observed MR and Ra values at 95% confidence level. Apart from this, it has been found that Gp and Nt exhibited the maximum contribution in the optimized values of the MR and Ra, respectively. Further, the corrosion analysis of the finished samples specified that the resistance against corrosion is a direct function of the surface finish. The morphological analysis of the corroded morphologies indicated that the rough sites of the implant surface have provided the nuclei for corrosion mechanics that ultimately resulted in the shredding of the appetite layer. Overall results highlighted that the MRF-AF is a potential technique for obtaining nano-scale finishing of the high-strength β-phase Ti-Nb-Ta-Zr alloy.
Collapse
Affiliation(s)
- Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India
- Correspondence: (C.P.); (G.K.)
| | - Alokesh Pramanik
- Department of Mechanical Engineering, Curtin University Australia, Perth 6102, Australia;
| | - Animesh Basak
- Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Rajasekhara Shabadi
- Unité Matériaux et Transformations CNRS UMR 8207, Université de Lille, 59000 Lille, France;
| | - Grzegorz Królczyk
- Department of Mechanical engineering, Opole University of Technology, 45-758 Opole, Poland;
- Correspondence: (C.P.); (G.K.)
| | - Marta Bogdan-Chudy
- Department of Mechanical engineering, Opole University of Technology, 45-758 Opole, Poland;
| | - Atul Babbar
- Mechanical Engineering Department, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, India;
| |
Collapse
|
21
|
Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration. MATERIALS 2020; 13:ma13194391. [PMID: 33019762 PMCID: PMC7579475 DOI: 10.3390/ma13194391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/01/2023]
Abstract
Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss® (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague–Dawley rat calvarial defect model to evaluate the bone healing effect of biomaterials, the efficacy of the newly developed xenograft Ti-oss® and Bio-Oss® (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss® experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss® group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss® with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.
Collapse
|
22
|
Li R, Ying B, Wei Y, Xing H, Qin Y, Li D. Comparative evaluation of Sr-incorporated calcium phosphate and calcium silicate as bioactive osteogenesis coating orthopedics applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Wang G, Wan Y, Liu Z. Construction of Complex Structures Containing Micro-Pits and Nano-Pits on the Surface of Titanium for Cytocompatibility Improvement. MATERIALS 2019; 12:ma12172820. [PMID: 31480689 PMCID: PMC6747959 DOI: 10.3390/ma12172820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
The surface topography of medical implants plays an important role in the regulation of cellular responses. Microstructure and nanostructure surfaces have been proved to enhance cell spreading and proliferation with respect to smooth surfaces. In this study, we fabricated a new structure including micro-pits and nano-pits on the surface of titanium via sandblasting, acid etching and chemical oxidation to investigate the influence of composite structures on cell behavior. Meanwhile, the surface properties and corrosion resistance of treated samples were also tested. The micro/nanostructured titanium surface comprising of micro-pits and nano-pits presented enhanced roughness and hydrophilicity. In addition, the corrosion resistance of the titanium substrate with micro-pits and nano-pits was significantly improved compared to that of polished titanium. More importantly, the micro/nanostructured titanium surface proved a good interfacial environment to promote osteoblast functions such as cell adhesion and spreading. Taken together, these results showed that the construction of micro/nanostructure on the titanium surface is an effective modification strategy to improve osteoblast cell responses.
Collapse
Affiliation(s)
- Guisen Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Zhanqiang Liu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
24
|
Zhou W, Huang O, Gan Y, Li Q, Zhou T, Xi W. Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:290-299. [PMID: 30688103 DOI: 10.1080/21691401.2018.1553784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of surface modification methods are applied to modify titanium implants to improve their biological activity. Micro-arc oxidation (MAO) can relatively simply and efficiently produce porous coatings with high bioactivity and bond strength on titanium surfaces. However, there is no conclusion about the effect of coatings with different pore sizes produced by MAO on bone marrow mesenchymal stem cells (BMSCs). To study the effect of different pore sizes on BMSCs, rat BMSCs were applied to detect the effect of different pore sizes prepared by MAO on cell adhesion and osteogenic differentiation. Three groups of coatings with different pore sizes were successfully prepared, and the pore size was within the range of 3-10 µm. Importantly, the expression of adhesion-related protein integrin β1 and osteogenic-related proteins OSX and ALP increased along with the increase in pore size. This study showed that the porous coating prepared by MAO promotes BMSCs adhesion and osteogenic differentiation. It reveals that the pore size is in the range of 3-10 µm and the larger pores are more beneficial for BMSCs adhesion and osteogenic differentiation. This study is instructive for optimizing the design of biomedical implant surfaces.
Collapse
Affiliation(s)
- Wuchao Zhou
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Ou Huang
- b Comprehensive Breast Health Centre, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yanzi Gan
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Qishun Li
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| | - Tian Zhou
- c Department of Oral Maxillofacial-Head and Neck Oncology , Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , China
| | - Weihong Xi
- a Department of Oral and Maxillofacial Surgery , Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University , Nanchang , China
| |
Collapse
|
25
|
Maintenance and Restoration Effect of the Surface Hydrophilicity of Pure Titanium by Sodium Hydroxide Treatment and its Effect on the Bioactivity of Osteoblasts. COATINGS 2019. [DOI: 10.3390/coatings9040222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, studies on the surface of titanium implants have shown that hydrophilic properties have a positive effect on bone binding, warranting further investigation into the maintenance and restoration of hydrophilic properties. In this work, a hydrophilic surface was obtained by plasma oxidation on the surface of sandblasted and acid-etched (SLA) titanium discs. We aimed to determine the effect of sodium hydroxide (NaOH) treatment on the maintenance and restoration of the surface hydrophilicity of titanium discs, as well as the relationship between the changes in hydrophilic properties on titanium surfaces and their biological properties. The results show that the treatment of hydrophilic surfaces with SLA, plasma oxidation, and NaOH treatments tend to enhance the early stages of cell adhesion, proliferation, and differentiation. Those results provide important guidance that SLA, plasma oxidation, and NaOH treatments can be used to restore the hydrophilic property of Ti that has been stored under room temperature and atmospheric pressure conditions.
Collapse
|
26
|
Hefni EK, Bencharit S, Kim SJ, Byrd KM, Moreli T, Nociti FH, Offenbacher S, Barros SP. Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients. BDJ Open 2018; 4:17042. [PMID: 30479835 PMCID: PMC6251902 DOI: 10.1038/s41405-018-0004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES The long-term success of dental implants is established by literature. Although clinically well defined, the complex genetic pathways underlying osseointegration have not yet been fully elucidated. Furthermore, patients with osteopenia/osteoporosis are considered to present as higher risk for implant failure. Porous tantalum trabecular metal (PTTM), an open-cell porous biomaterial, is suggested to present enhanced biocompatibility and osteoconductivity. The goal of this study was to evaluate the expression patterns of a panel of genes closely associated with osteogenesis and wound healing in osteopenic patients receiving either traditional titanium (Ti) or PTTM cylinders to assess the pathway of genes activation in the early phases of osseointegration. MATERIAL AND METHODS Implant cylinders made of Ti and PTTM were placed in osteopenic volunteers. At 2- and 4 weeks of healing, one Ti and one PTTM cylinder were removed from each subject for RT-PCR analysis using osteogenesis PCR array. RESULTS Compared to Ti, PTTM-associated bone displayed upregulation of bone matrix proteins, BMP/TGF tisuperfamily, soluble ligand and integrin receptors, growth factors, and collagen genes at one or both time points. Histologically, PTTM implants displayed more robust osteogenesis deposition and maturity when compared to Ti implants from the same patient. CONCLUSIONS Our results indicate that PTTM properties could induce an earlier activation of genes associated with osteogenesis in osteopenic patients suggesting that PTTM implants may attenuate the relative risk of placing dental implants in this population.
Collapse
Affiliation(s)
- E. K. Hefni
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. Bencharit
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA USA
| | - S. J. Kim
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - K. M. Byrd
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - T. Moreli
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - F. H. Nociti
- Department of Periodontology, School of Dentistry, State University of Campinas, Campinas, Brazil
| | - S. Offenbacher
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| | - S. P. Barros
- Department of Periodontology, School of Dentistry, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
27
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
28
|
Rezaei NM, Hasegawa M, Ishijima M, Nakhaei K, Okubo T, Taniyama T, Ghassemi A, Tahsili T, Park W, Hirota M, Ogawa T. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. Int J Nanomedicine 2018; 13:3381-3395. [PMID: 29922058 PMCID: PMC5997135 DOI: 10.2147/ijn.s159955] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Zirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales. METHODS Machine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting. Morphology of the surfaces was analyzed by three-dimensional imaging and profiling. Rat femur-derived bone marrow cells were cultured on zirconia disks. Zirconia implants were placed in rat femurs and the strength of osseointegration was evaluated by biomechanical push-in test. RESULTS The rough zirconia surface was characterized by meso-scale (50 µm wide, 6-8 µm deep) grooves, micro-scale (1-10 µm wide, 0.1-3 µm deep) valleys, and nano-scale (10-400 nm wide, 10-300 nm high) nodules, whereas the machined surface was flat and uniform. The average roughness (Ra) of rough zirconia was five times greater than that of machined zirconia. The expression of bone-related genes such as collagen I, osteopontin, osteocalcin, and BMP-2 was 7-25 times upregulated in osteoblasts on rough zirconia at the early stage of culture. The number of attached cells and rate of proliferation were similar between machined and rough zirconia. The strength of osseointegration for rough zirconia was twice that of machined zirconia at weeks two and four of healing, with evidence of mineralized tissue persisting around rough zirconia implants as visualized by electron microscopy and elemental analysis. CONCLUSION This unique meso-/micro-/nano-scale rough zirconia showed a remarkable increase in osseointegration compared to machine-smooth zirconia associated with accelerated differentiation of osteoblasts. Cell attachment and proliferation were not compromised on rough zirconia unlike on rough titanium. This is the first report introducing a rough zirconia surface with distinct hierarchical morphology and providing an effective strategy to improve and develop zirconia implants.
Collapse
Affiliation(s)
- Naser Mohammadzadeh Rezaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahisa Okubo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Tania Tahsili
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
29
|
Lüthje FL, Skovgaard K, Jensen HE, Kruse Jensen L. Pigs are useful for the molecular study of bone inflammation and regeneration in humans. Lab Anim 2018; 52:630-640. [PMID: 29653496 DOI: 10.1177/0023677218766391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pigs are used with increased frequency to model different kinds of orthopedic surgical conditions. In order to show the full potential of porcine models in orthopedic research, it is therefore required to examine the expression of bone regulatory genes in pigs affected by orthopedic surgery and compare it to the expression in humans and mice as mice, are one of the most applied animal species in orthopedics today. In the present study, the local molecular response to drilling of a tibial implant cavity, and the subsequent insertion of a steel implant was examined in a porcine model. Pigs were euthanized five days after drilling of the bone. The molecular response of 73 different genes was analyzed using a high-throughput quantitative polymerase chain reaction platform and compared to histopathology. Histologically, it was found that bone remodeling was initiated on day 5 after surgery and was associated with upregulation of several genes involved in bone degradation and formation ( CTSK, ACP5, IBSP, RANK, RANKL and COL1A1). Interleukin-6 and several acute-phase proteins (C3, SAA and ITIH4) were significantly upregulated, indicating their importance in the initial process of healing and osseointegration. All tested bone morphogenic proteins (BMP2, -4 and -7) including their inhibitor noggin were also significantly upregulated. Surprisingly, vascular endothelial growth factor A was not found to be regulated five days after surgery while several other vascular growth factors (ANGPT1, ANGPT2 and PTN) were upregulated. The pig was found to be a useful model for elucidation of bone regulatory genes in humans.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark.,2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Kerstin Skovgaard
- 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Henrik Elvang Jensen
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark
| | - Louise Kruse Jensen
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Wang G, Wan Y, Wang T, Liu Z. Corrosion Behavior of Titanium Implant with different Surface Morphologies. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.promfg.2017.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Colnot C, Romero DM, Huang S, Rahman J, Currey JA, Nanci A, Brunski JB, Helms JA. Molecular Analysis of Healing at a Bone-Implant Interface. J Dent Res 2016; 86:862-7. [PMID: 17720856 DOI: 10.1177/154405910708600911] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
While bone healing occurs around implants, the extent to which this differs from healing at sites without implants remains unknown. We tested the hypothesis that an implant surface may affect the early stages of healing. In a new mouse model, we made cellular and molecular evaluations of healing at bone-implant interfaces vs. empty cortical defects. We assessed healing around Ti-6Al-4V, poly(L-lactide-co-D,L,-lactide), and 303 stainless steel implants with surface characteristics comparable with those of commercial implants. Our qualitative cellular and molecular evaluations showed that osteoblast differentiation and new bone deposition began sooner around the implants, suggesting that the implant surface and microenvironment around implants favored osteogenesis. The general stages of healing in this mouse model resembled those in larger animal models, and supported the use of this new model as a test bed for studying cellular and molecular responses to biomaterial and biomechanical conditions.
Collapse
Affiliation(s)
- C Colnot
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94110-1342, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jurczyk K, Miklaszewski A, Jurczyk MU, Jurczyk M. Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8032-8046. [PMID: 28793695 PMCID: PMC5458847 DOI: 10.3390/ma8125441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/28/2023]
Abstract
Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10) composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Karolina Jurczyk
- Department of Conservative Dentistry and Periodontology, Poznan University of Medical Sciences, Bukowska 70, Poznan 60-812, Poland.
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, Poznan 61-138, Poland.
| | - Mieczyslawa U Jurczyk
- Division of Mother's and Child's Health, Poznan University of Medical Sciences, Polna 33, Poznan 60-535, Poland.
| | - Mieczyslaw Jurczyk
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, Poznan 61-138, Poland.
| |
Collapse
|
33
|
Prado RFD, de Oliveira FS, Nascimento RD, de Vasconcellos LMR, Carvalho YR, Cairo CAA. Osteoblast response to porous titanium and biomimetic surface: In vitro analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:194-203. [DOI: 10.1016/j.msec.2015.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/21/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023]
|
34
|
Elia R, Michelson CD, Perera AL, Harsono M, Leisk GG, Kugel G, Kaplan DL. Silk electrogel coatings for titanium dental implants. J Biomater Appl 2014; 29:1247-55. [PMID: 25425563 DOI: 10.1177/0885328214561536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings.
Collapse
Affiliation(s)
- Roberto Elia
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts, USA
| | | | - Austin L Perera
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - Masly Harsono
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - Gray G Leisk
- Department of Mechanical Engineering, Tufts University Medford, Massachusetts, USA
| | - Gerard Kugel
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts, USA
| |
Collapse
|
35
|
Barone A, Toti P, Funel N, Campani D, Covani U. Expression of SP7, RUNX1, DLX5, and CTNNB1 in human mesenchymal stem cells cultured on xenogeneic bone substitute as compared with machined titanium. IMPLANT DENT 2014; 23:407-15. [PMID: 25025858 DOI: 10.1097/id.0000000000000116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of this research was to investigate the gene expression profile of 4 transcription factors in human mesenchymal stem cells (hMSC) cultured with a xenogeneic bone substitute and a support of machined titanium. MATERIAL AND METHODS In vitro studies were performed on hMSC cells, which grew in contact with cortical porcine bone and machined titanium disks for 10 days. RNA quantification for genes DLX5, CTNNB1, RUNX1, and SP7 was assessed by quantitative real-time polymerase chain reaction. For cells supported by titanium, immunocytochemistry of osteocalcin (OC) was also performed. RESULTS In the osteoblast-induced cells (OIC), DLX5, CTNNB1, and RUNX1 were significantly upregulated (+2.38-, +3.51-, and +7.08-fold, respectively), whereas SP7 was downregulated (-26.32-fold). None of the genes seemed to be upregulated or downregulated by the corticocancellous porcine bone. In cells grown on titanium support, DLX5 and RUNX1 were respectively upregulated (+3.12-fold) and downregulated (-2.14-fold). For titanium support, the presence of both catenin beta-1 and OC was verified. CONCLUSION The 2 genes RUNX1 and SP7 resulted differently expressed in cells cultured on metallic supports if compared with the expression recorded for OIC. An induction of the osteogenic phenotype was observed when cells were cultured on machined titanium, but not on xenogeneic material.
Collapse
Affiliation(s)
- Antonio Barone
- *Adjunct Professor, Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy; Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore, Italy. †Postdoctoral Fellow, Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy; Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore, Italy. ‡Postdoctoral Fellow, Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy; Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore, Italy. §Associate Professor, Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy; Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore, Italy. ‖Professor, Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy; Tuscan Stomatologic Institute, Versilia General Hospital, Lido di Camaiore, Italy
| | | | | | | | | |
Collapse
|
36
|
Shnaiderman-Shapiro A, Dayan D, Buchner A, Schwartz I, Yahalom R, Vered M. Histopathological spectrum of bone lesions associated with dental implant failure: osteomyelitis and beyond. Head Neck Pathol 2014; 9:140-6. [PMID: 24687889 PMCID: PMC4382485 DOI: 10.1007/s12105-014-0538-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
Early or late post-implant placement complications are usually localized infectious/inflammatory processes and treated accordingly. If the healing process does not take place within a reasonable timeframe, the possibility of a pathologic process beyond localized infection/inflammation should be suspected. We describe a radiological/histopathological spectrum of bony lesions ranging from inflammatory to malignant lesions surrounding failed dental implants. Five cases of mandibular dental implant failure that clinically, radiologically and histopathologically appeared to be inflammatory processes are presented. The failure of the dental implants was immediate in two cases and late in the remaining three. The radiological features were essentially similar for all five, and they included radiolucent or mixed radiolucent-radiopaque lesions with poorly defined borders. Three lesions were limited to the area of the failed implant, while the other two extended to a large part of the mandible. The histopathological findings ranged from acute osteomyelitis and chronic osteomyelitis with features of a fibro-osseous-like lesion and occasional rimming of atypical osteoblasts to osteogenic sarcoma that was admixed with a component of osteomyelitis (diagnosis of the latter was achieved only after a series of biopsies). In-depth investigative procedures are imperative in order to establish an accurate diagnosis whenever the histopathological diagnosis is inconsistent with persisting clinical signs and symptoms in bone lesions associated with failed dental implants.
Collapse
Affiliation(s)
- Anna Shnaiderman-Shapiro
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos Buchner
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ignat Schwartz
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ran Yahalom
- Department of Oral and Maxillofacial Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel ,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
37
|
Abstract
Osseointegration-based dental implants have become a well-accepted treatment modality for complete and partial edentulism. The success of this treatment largely depends on the stable integration and maintenance of implant fixtures in alveolar bone; however, the molecular and cellular mechanisms regulating this unique tissue reaction have not yet been fully uncovered. Radiographic and histologic observations suggest the sustained retention of peri-implant bone without an apparent susceptibility to catabolic bone remodeling; therefore, implant-induced bone formation continues to be intensively investigated. Increasing numbers of whole-genome transcriptome studies suggest complex molecular pathways that may play putative roles in osseointegration. This review highlights genetic networks related to bone quality, the transient chondrogenic phase, the vitamin D axis, and the peripheral circadian rhythm to elute the regulatory mechanisms underlying the establishment and maintenance of osseointegration.
Collapse
Affiliation(s)
- I Nishimura
- Weintraub Center for Reconstructive Biotechnology, Divisions of Advanced Prosthodontics and Oral Medicine & Biology, UCLA School of Dentistry, Los Angeles, CA 90095-1668
| |
Collapse
|
38
|
Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Anitua E, Prado R, Azkargorta M, Rodriguez-Suárez E, Iloro I, Casado-Vela J, Elortza F, Orive G. High-throughput proteomic characterization of plasma rich in growth factors (PRGF-Endoret)-derived fibrin clot interactome. J Tissue Eng Regen Med 2013; 9:E1-12. [PMID: 23505226 DOI: 10.1002/term.1721] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/17/2012] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Plasma rich in growth factors (PRGF®-Endoret®) is an autologous technology that contains a set of proteins specifically addressed to wound healing and tissue regeneration. The scaffold formed by using this technology is a clot mainly composed of fibrin protein, forming a three-dimensional (3D) macroscopic network. This biomaterial is easily obtained by biotechnological means from blood and can be used in a range of situations to help wound healing and tissue regeneration. Although the main constituent of this clot is the fibrin scaffold, little is known about other proteins interacting in this clot that may act as adjuvants in the healing process. The aim of this study was to characterize the proteins enclosed by PRGF-Endoret scaffold, using a double-proteomic approach that combines 1D-SDS-PAGE approach followed by LC-MS/MS, and 2-DE followed by MALDI-TOF/TOF. The results presented here provide a description of the catalogue of key proteins in close contact with the fibrin scaffold. The obtained lists of proteins were grouped into families and networks according to gene ontology. Taken together, an enrichment of both proteins and protein families specifically involved in tissue regeneration and wound healing has been found.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain.,Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, ProteoRed, CIBER-ehd, Bizkaia Technology Park, Derio, Spain
| | - Eva Rodriguez-Suárez
- Proteomics Platform, CIC bioGUNE, ProteoRed, CIBER-ehd, Bizkaia Technology Park, Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, ProteoRed, CIBER-ehd, Bizkaia Technology Park, Derio, Spain
| | - Juan Casado-Vela
- Centro Nacional de Biotecnología. Lab 115. Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, ProteoRed, CIBER-ehd, Bizkaia Technology Park, Derio, Spain
| | - Gorka Orive
- BTI-Biotechnology Institute, Vitoria, Spain.,Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
| |
Collapse
|
40
|
Ramazanoglu M, Lutz R, Rusche P, Trabzon L, Kose GT, Prechtl C, Schlegel KA. Bone response to biomimetic implants delivering BMP-2 and VEGF: an immunohistochemical study. J Craniomaxillofac Surg 2013; 41:826-35. [PMID: 23434516 DOI: 10.1016/j.jcms.2013.01.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/18/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022] Open
Abstract
This animal study evaluated bone healing around titanium implant surfaces biomimetically coated with bone morphogenic protein-2 (BMP-2) and/or vascular endothelial growth factor (VEGF) by examining bone matrix proteins and mineralisation. Five different implant surfaces were established: acid-etched surface (AE), biomimetic calcium phosphate surface (CAP), BMP-2 loaded CAP surface, VEGF loaded CAP surface and dual BMP-2 + VEGF loaded CAP surface. The implants were inserted into calvariae of adult domestic pigs. For the comparison of osteoconductive capacity of each surface, bone mineral density and expression of bone matrix proteins (collagen I, BMP-2/4, osteocalcin and osteopontin) inside defined chambers around the implant were assessed using light microscopy and microradiography and immunohistochemical analysis at 1, 2 and 4 weeks. In the both groups delivering BMP-2, the bone mineral density was significantly enhanced after 2 weeks and the highest value was measured for the group BMP + VEGF. In the group VEGF, collagen I and BMP-2/4 expressions were significantly up-regulated at the first and second weeks. The percentage of BMP-2/4 positive cells in the group BMP + VEGF was significantly enhanced compared with the groups AE and CAP at the second week. Although the highest osteocalcin and osteopontin expression values were observed for the group BMP + VEGF after 2 weeks, no statistically significant difference in osteocalcin and osteopontin expressions was found between all groups at any time. It was concluded that combined delivery of BMP-2 and VEGF favoured bone mineralisation and expression of important bone matrix proteins that might explain synergistic interaction between both growth factors.
Collapse
Affiliation(s)
- Mustafa Ramazanoglu
- Department of Oral Surgery, Faculty of Dentistry, Istanbul University, Istanbul 34093, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Pelaez-Vargas A, Gallego-Perez D, Carvalho A, Fernandes MH, Hansford DJ, Monteiro FJ. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration-In vitrostudy. J Biomed Mater Res B Appl Biomater 2013; 101:762-9. [DOI: 10.1002/jbm.b.32879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/23/2012] [Accepted: 11/25/2012] [Indexed: 11/09/2022]
|
42
|
Yamada M, Ueno T, Minamikawa H, Ikeda T, Nakagawa K, Ogawa T. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clin Oral Implants Res 2012; 24:991-1001. [DOI: 10.1111/j.1600-0501.2012.02507.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Masahiro Yamada
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| | - Takeshi Ueno
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| | - Hajime Minamikawa
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| | - Takayuki Ikeda
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| | - Kaori Nakagawa
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| | - Takahiro Ogawa
- Laboratory of Bone and Implant Sciences (LBIS); The Weintraub Center for Reconstructive Biotechnology; Division of Advanced Prosthodontics; Biomaterials and Hospital Dentistry; UCLA School of Dentistry; Los Angeles; CA; USA
| |
Collapse
|
43
|
Gao Y, Li Y, Xiao J, Xu L, Hu K, Kong L. Effects of microrough and hierarchical hybrid micro/nanorough surface implants on osseointegration in ovariectomized rats: A longitudinal in vivo microcomputed tomography evaluation. J Biomed Mater Res A 2012; 100:2159-67. [DOI: 10.1002/jbm.a.34129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/05/2012] [Accepted: 02/15/2012] [Indexed: 01/24/2023]
|
44
|
Yamada M, Ueno T, Tsukimura N, Ikeda T, Nakagawa K, Hori N, Suzuki T, Ogawa T. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomedicine 2012; 7:859-73. [PMID: 22359461 PMCID: PMC3284227 DOI: 10.2147/ijn.s28082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nano-structured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone–implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant.
Collapse
Affiliation(s)
- Masahiro Yamada
- Laboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee MH, Kang JH, Lee SW. The significance of differential expression of genes and proteins in human primary cells caused by microgrooved biomaterial substrata. Biomaterials 2012; 33:3216-34. [PMID: 22285466 DOI: 10.1016/j.biomaterials.2012.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/14/2012] [Indexed: 01/18/2023]
Abstract
We demonstrate that etched microgrooves, with truncated V-shape in cross-section and subsequent acid etching, on titanium substrata alter the expression of various genes and proteins in human primary cells. Etched microgrooves with 30 or 60 μm width and 10 μm depth promoted human gingival fibroblast proliferation and significantly enhanced the osteoblast differentiation of human bone marrow-derived mesenchymal stem cells and human periodontal ligament cells by inducing differential expression of various genes involved in cell adhesion, migration, proliferation, mitosis, cytoskeletal reorganization, translation initiation, vesicular trafficking, proton transportation, transforming growth factor-β signaling, mitogen-activated protein kinase signaling, simvastatin's anabolic effect on bone, inhibitory guanine nucleotide binding protein (G protein)'s action, sumoylation pathway, survival/apoptosis, mitochondrial distribution, type I collagen production, osteoblast differentiation, and bone remodeling that were verified by the differential display PCR and quantitative real-time PCR. The most influential genes on the enhancement of fibroblast proliferation or osteoblast differentiation were determined by multiple regression analysis, and the expression of relevant proteins was confirmed by western blotting and protein quantitation.
Collapse
Affiliation(s)
- Myung Hyun Lee
- Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology, 77 10-gil, Digital-ro, Geumcheon-gu, Seoul 153-801, Republic of Korea
| | | | | |
Collapse
|
46
|
Park S, Heo HA, Lee W, Pyo SW. Biological markers around immediately placed titanium implant in the extraction socket of diabetic and insulin-treated rat maxilla. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.4.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Suhyun Park
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-A Heo
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Lee
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Woon Pyo
- Department of Oral and Maxillofacial Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
47
|
YAMAKI K, KATAOKA Y, OHTSUKA F, MIYAZAKI T. Micro-CT evaluation of in vivo osteogenesis at implants processed by wire-type electric discharge machining. Dent Mater J 2012; 31:427-32. [DOI: 10.4012/dmj.2011-051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Tsukimura N, Ueno T, Iwasa F, Minamikawa H, Sugita Y, Ishizaki K, Ikeda T, Nakagawa K, Yamada M, Ogawa T. Bone integration capability of alkali- and heat-treated nanobimorphic Ti-15Mo-5Zr-3Al. Acta Biomater 2011; 7:4267-77. [PMID: 21888994 DOI: 10.1016/j.actbio.2011.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 11/30/2022]
Abstract
The role of nanofeatured titanium surfaces in a number of aspects of in vivo bone-implant integration, and, in particular, their potential advantages over microfeatured titanium surfaces, as well as their specific contribution to osteoconductivity, is largely unknown. This study reports the creation of a unique nanobimorphic titanium surface comprised of nanotrabecular and nanotuft-like structures and determines how the addition of this nanofeature to a microroughened surface affects bone-implant integration. Machined surfaces without microroughness, sandblasted microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment of Ti-15Mo-5Zr-3Al alloy were subjected to biomechanical, interfacial and histological analyses in a rat model. The presence of microroughness enabled accelerated establishment of biomechanical implant fixation in the early stages of healing compared to the non-microroughened surfaces; however, it did not increase the implant fixation at the late stages of healing. The addition of nanobimorphic features to the microroughened surfaces further increased the implant fixation by as much as 60-100% over the healing time. Bone area within 50 μm of the implant surface, but not beyond this distance, was significantly increased by the presence of nanobimorphic features. Although the percentage of bone-implant contact was also significantly increased by the addition of nanobimorphic features, the greatest improvement was found in the soft tissue intervention between the bone and the implant, which was reduced from >30% to <5%. Mineralized tissue densely deposited with calcium-binding globular proteins was observed in an extensive area of nanobimorphic surfaces after biomechanical testing. This study clearly demonstrates the nanofeature-enhanced osteoconductivity of titanium by an alkali- and heat-treated nanobimorphic surface compared to that by microfeatured surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The identified biological parameters that successfully detect the advantages of nanofeatures over microfeatures will be useful in evaluating new implant surfaces in future studies.
Collapse
Affiliation(s)
- Naoki Tsukimura
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaneko H, Kamiie J, Kawakami H, Anada T, Honda Y, Shiraishi N, Kamakura S, Terasaki T, Shimauchi H, Suzuki O. Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals. Anal Biochem 2011; 418:276-85. [DOI: 10.1016/j.ab.2011.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/26/2022]
|
50
|
Ishizaki K, Sugita Y, Iwasa F, Minamikawa H, Ueno T, Yamada M, Suzuki T, Ogawa T. Nanometer-thin TiO₂ enhances skeletal muscle cell phenotype and behavior. Int J Nanomedicine 2011; 6:2191-203. [PMID: 22114483 PMCID: PMC3215160 DOI: 10.2147/ijn.s24839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The independent role of the surface chemistry of titanium in determining its biological properties is yet to be determined. Although titanium implants are often in contact with muscle tissue, the interaction of muscle cells with titanium is largely unknown. This study tested the hypotheses that the surface chemistry of clinically established microroughened titanium surfaces could be controllably varied by coating with a minimally thin layer of TiO2 (ideally pico-to-nanometer in thickness) without altering the existing topographical and roughness features, and that the change in superficial chemistry of titanium is effective in improving the biological properties of titanium. Methods and results Acid-etched microroughened titanium surfaces were coated with TiO2 using slow-rate sputter deposition of molten TiO2 nanoparticles. A TiO2 coating of 300 pm to 6.3 nm increased the surface oxygen on the titanium substrates in a controllable manner, but did not alter the existing microscale architecture and roughness of the substrates. Cells derived from rat skeletal muscles showed increased attachment, spread, adhesion strength, proliferation, gene expression, and collagen production at the initial and early stage of culture on 6.3 nm thick TiO2-coated microroughened titanium surfaces compared with uncoated titanium surfaces. Conclusion Using an exemplary slow-rate sputter deposition technique of molten TiO2 nanoparticles, this study demonstrated that titanium substrates, even with microscale roughness, can be sufficiently chemically modified to enhance their biological properties without altering the existing microscale morphology. The controllable and exclusive chemical modification technique presented in this study may open a new avenue for surface modifications of titanium-based biomaterials for better cell and tissue affinity and reaction.
Collapse
Affiliation(s)
- Ken Ishizaki
- Laboratory for Bone and Implant Sciences, The Jane and Jerry, Weintraub Center for Reconstructive, Biotechnology, Division of Advanced, Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | |
Collapse
|