1
|
Ratanasereeprasert N, Hsu LF, Wang SK, Chen YJ, Chang JH, Yao CCJ. Molecular signaling and mechanisms of low-level laser-induced gene expression in cells involved in orthodontic tooth movement. J Formos Med Assoc 2024; 123:442-451. [PMID: 37805307 DOI: 10.1016/j.jfma.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND The study aimed to observe molecular signaling, including reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), to evaluate the alteration of gene expression by low-level laser therapy (LLLT) and the correlation between its mechanisms and the NF-kB pathway in cells involved in orthodontic tooth movement. METHODS Osteoblast-like cells (MG63), immortalized periodontal ligament cells (iPDL), and M1 macrophage-like cells were irradiated by 980-nm LLLT with energy densities of 1 and 10 J/cm2 ΔΨm and intracellular ROS were monitored using fluorescent probes. The changes of mRNA expression were assessed using reverse transcription polymerase chain reaction (RT-PCR). NF-kB inhibitor, ROS scavenger, and ΔΨm suppressor were used to analyze signals associated with the regulation of gene expression. Finally, Western blot analysis was performed to confirm NF-kB signaling after LLLT. RESULTS We found the increases of ΔΨm and ROS in all three cell types after LLLT, but no significant difference was observed between 1 and 10 J/cm2 LLLT. Regarding gene expression, some target genes were upregulated in MG63 6 h, 12 h, and 1 day after LLLT and in iPDL cells 12 h and 1 day after LLLT. However, no changes occurred in M1 cells. The inhibitor that significantly reduced most changes in gene expression was NF-kB inhibitor. Western blot analysis showed the increase in p-IkBα level after LLLT in iPDL and MG63, but not in M1. CONCLUSION The 980-nm LLLT increased ΔΨm and ROS production in all three cell types. However, changes in gene regulation were found only in MG63 and iPDL cells, which related to the NF-kB pathway.
Collapse
Affiliation(s)
| | - Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shih-Kai Wang
- Department of Dentistry, School of Dentistry, National Taiwan University, Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Heng Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Hsu LF, Ratanasereeprasert N, Wang SK, Chen JT, Chen YJ, Yeh TH, Sung HH, Yao CCJ. Craniofacial and olfactory sensory changes after long-term unilateral nasal obstruction-an animal study using MMP-3-LUC transgenic rats. Sci Rep 2024; 14:2616. [PMID: 38297007 PMCID: PMC10830476 DOI: 10.1038/s41598-024-51544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Nasal obstruction exerts considerable physiological effects on the respiratory system and craniofacial morphology during the developmental stage. This study used MMP-3-LUC transgenic rats for in vivo tracking of long-term expression in the rat nasal region after unilateral nasal obstruction. Skeletal changes of the craniofacial, nasal, and sinus regions were measured through micro-computed tomography examination and analysis with 3D image processing and calculation. Matrix metalloproteinase-3 and olfactory marker protein expression were also investigated through immunohistochemistry (IHC). Unilateral nasal obstruction significantly reduced the MMP-3 signal in the nasal region of MMP-3-LUC transgenic rats, which was mainly expressed in the respiratory epithelium. Long-term obstruction also caused morphological changes of the craniofacial hard tissue, such as nasal septal deviation, longer inter-jaw distance, and increased maxillary molar dental height. It also caused compensatory growth in olfactory nerve bundles and the olfactory epithelium, as confirmed by IHC. In our study, long-term unilateral nasal obstruction caused nasal septal deviation toward the unobstructed side, hyper divergent facial development including longer molar dental height, and reduced MMP-3 production. However, further investigation is necessary to explore the mechanism in depth.
Collapse
Affiliation(s)
- Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Nutthakarn Ratanasereeprasert
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Jung-Tsu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Yi-Jane Chen
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan.
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Hsu LF, Chang BE, Tseng KJ, Liao CC, Tsai SC, Hsiao HY, Lin SC, Liao PW, Chen YJ, Jane Yao CC. Orthodontic force regulates metalloproteinase-3 promoter in osteoblasts and transgenic mouse models. J Dent Sci 2022; 17:331-337. [PMID: 35028055 PMCID: PMC8740386 DOI: 10.1016/j.jds.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background/purpose Previously we demonstrated up-regulation of matrix metalloproteinase-3 (MMP-3) in human osteoblasts under compression and in bony specimens of experimental orthodontic tooth movement (OTM). Here, we studied the temporal characteristics of compression stimulation in human and mouse osteoblast cell lines, and generated a transgenic mouse model for assessing the MMP-3 expression during OTM. Materials and methods We investigated MMP-3 expressions in human and murine osteoblasts through RT-PCR and luciferase assay, after compressive force loading. Inhibitors were added to identify the possible mechanisms for signal transduction. A human MMP-3 promoter was isolated, cloned and transfected to generate a transgenic mouse with a green fluorescent protein reporter. OTM was then initiated to observe the location and time course of transcriptional regulation of MMP-3 signals. Results We found changes in the transcription of MMP-3 in response to mechanical force applied to both human and mouse osteoblast cell lines, suggesting that the response is positive across species. Cloned human MMP-3 promoter may cause the response of luciferase to 1% compression. Moreover, p38 inhibitor exerted a down-regulatory effect on MMP-3 promoter expression, although the inhibitory effect didn't reach a significant level. In the transgenic mouse OTM model, we again found increased expression of MMP-3 in response to mechanical force loading around the periodontal ligament. Conclusion Mechanical force can stimulate MMP-3 expression, possibly through the p38 MAPK pathway, with its strongest signal occurring at 24 h. The mechanical responsiveness in MMP-3 promoter regions can be observed in both humans and rodents in vitro and in vivo.
Collapse
Affiliation(s)
- Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.,Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Bei-En Chang
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Jung Tseng
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ching Liao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yi Hsiao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Liao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Lan KF, Shen YQ, Li Y, Ling CL, Gong YM, Xia SC, Guo XH, Ding X. Chemokine C-C motif ligand 8 in periodontal ligament during orthodontic tooth movement. Arch Oral Biol 2021; 123:104996. [PMID: 33453555 DOI: 10.1016/j.archoralbio.2020.104996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To investigate the roles of chemokine (C-C motif) ligand 8 (CCL8) in periodontal ligament during orthodontic tooth movement (OTM). METHODS Bioinformatics analyzed 100 genes in human periodontal ligament cells that were most upregulated after 48 hours of mechanical stress, and these genes were classified through GO and KEGG databases. Nickel-titanium closed-coil springs were placed between right first molar and incisors to produce 20 cN of orthodontic force in eight-week-old male SD rats for 1 and 2 days, followed by immunohistochemical staining of CCL8. Human periodontal ligament fibroblasts (hPDLFs) were stimulated by 14% cyclic tension force (Flexcell FX-5000 T Tension System) or hypoxia conditions to mimic OTM for 1 and 2 days, then the resulting CCL8 were examined through ELISA. Scratching assay was performed by treating hPDLFs with different concentrations of CCL8 (1 ng/ml, 10 ng/ml, 100 ng/ml). The migration, proliferation, and adhesion abilities of 100 ng/ml CCL8-treated hPDLFs were also examined. qRT-PCR and western blot detected matrix metalloproteinase 3, periostin, and osteoprotegrin expressions of hPDLFs under 100 ng/ml CCL8. RESULTS Bioinformatic analysis demonstrated that CCL8 was upregulated after applying mechanical stress for 48 hours. CCL8 secretion showed upregulation after 24 hours of OTM applicationsin vivo and in vitro. CCL8-treated hPDLFs showed significant positive effects on cell proliferation and matrix metalloproteinase 3. It also inhibited periostin and osteoprotegrin expressions. CONCLUSIONS CCL8 was upregulated in periodontal ligament during initial stage of OTM. Although CCL8 in human periodontal ligaments showed no significant effects on cell migration ability, it did enhance cell proliferation and osteoclastogenesis.
Collapse
Affiliation(s)
- Keng-Fu Lan
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Qing Shen
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Li
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chuan-Liang Ling
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Ming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Chi Xia
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue-Hua Guo
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojun Ding
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; State key laboratory of molecular engineering of polymers, Fudan University., Shanghai 200438, China.
| |
Collapse
|
5
|
Spitz A, Christovam IO, Marañón-Vásquez GA, Masterson DF, Adesse D, Maia LC, Bolognese AM. Global gene expression profile of periodontal ligament cells submitted to mechanical loading: A systematic review. Arch Oral Biol 2020; 118:104884. [PMID: 32877888 DOI: 10.1016/j.archoralbio.2020.104884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the evidence reporting gene expression array data of human in vitro cultured periodontal ligament cells (PDLCs) submitted to static mechanical loading compared to a control group. DESIGN Systematic searches were performed in MEDLINE/PubMed, Scopus, Web of Science, Virtual Health Library, The Cochrane Library and the System for Information on Grey Literature in Europe up to June 2019. A narrative synthesis was performed to summarize differentially expressed genes (DEGs). These were grouped according to the culture method (2D or 3D), force type (compression or tension) and observation time. Additionally, gene ontology (GO) analysis was performed using the Database for Annotation Visualization and Integrated Discovery. The risk of bias (RoB) and certainty of evidence (CoE) were assessed using a modified CONSORT checklist and the GRADE tool, respectively. RESULTS Of eight studies included (all rated as having moderate RoB), only two provided the complete list of DEGs and four studies performed GO, gene network or pathways analysis. "Cell proliferation", "cell-cell signaling", "response to hypoxia and to mechanical stimulus" were among the significantly enriched biological processes in 3D-cultured compressed PDLCs (moderate CoE); while "collagen catabolic process", "extracellular matrix organization" and "cell proliferation" were associated with DEGs of 3D-cultured PDLCs submitted to tension (very low CoE). Biological processes significantly enriched in 2D-cultured PDLCs under compression were "extracellular matrix organization", "canonical glycolysis" and "glycolytic process" (very low CoE). CONCLUSION Genes such as NR4A2, NR4A3, NAMPT, PGK1, and REDD1 are suggested as novel biomarkers for orthodontic tooth movement. Limited amount of evidence on the complete gene expression profile and the high heterogeneity in methodologies make it impossible to obtain definite conclusions. New studies following standardized and well-designed in vitro model and reporting complete gene expression datasets are needed.
Collapse
Affiliation(s)
- Alice Spitz
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ilana Oliveira Christovam
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Daniele Ferreira Masterson
- Central Library of the Health Science Center, Federal University of Rio de Janeiro, Brazil Avenida Carlos Chagas Filho, Bl L, 373 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-90, Brazil.
| | - Daniel Adesse
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| | - Ana Maria Bolognese
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rua. Prof. Rodolpho Paulo Rocco, 325 - Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
6
|
Li Z, Yu M, Jin S, Wang Y, Luo R, Huo B, Liu D, He D, Zhou Y, Liu Y. Stress Distribution and Collagen Remodeling of Periodontal Ligament During Orthodontic Tooth Movement. Front Pharmacol 2019; 10:1263. [PMID: 31708784 PMCID: PMC6821875 DOI: 10.3389/fphar.2019.01263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/30/2019] [Indexed: 01/11/2023] Open
Abstract
Periodontal ligament (PDL), as a mechanical connection between the alveolar bone and tooth, plays a pivotal role in force-induced orthodontic tooth movement (OTM). However, how mechanical force controls remodeling of PDL collagenous extracellular matrix (ECM) is largely unknown. Here, we aimed to evaluate the stress distribution and ECM fiber remodeling of PDL during the process of OTM. An experimental tooth movement model was built by ligating a coil spring between the left maxillary first molar and the central incisors. After activating the coil spring for 7 days, the distance of tooth movement was 0.324 ± 0.021 mm. The 3D finite element modeling showed that the PDL stress obviously concentrated at cervical margin of five roots and apical area of the mesial root, and the compression region was distributed at whole apical root and cervical margin of the medial side (normal stress < -0.05 MPa). After force induction, the ECM fibers were disordered and immature collagen III fibers significantly increased, especially in the apical region, which corresponds to the stress concentration and compression area. Furthermore, the osteoclasts and interleukin-1β expression were dramatically increased in the apical region of the force group. Taken together, orthodontic loading could change the stress distribution of PDL and induce a disordered arrangement and remodeling of ECM fibers. These findings provide orthodontists both mechanical and biological evidences that root resorption is prone to occur in the apical area during the process of OTM.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rui Luo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Dawei Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
7
|
Tantilertanant Y, Niyompanich J, Everts V, Supaphol P, Pavasant P, Sanchavanakit N. Cyclic tensile force-upregulated IL6 increases MMP3 expression by human periodontal ligament cells. Arch Oral Biol 2019; 107:104495. [PMID: 31377584 DOI: 10.1016/j.archoralbio.2019.104495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Cyclic tensile force (CTF) modulates physiological responses of periodontal ligament (PDL) cells. PDL cells are mechanosensitive and are able to maintain tissue homeostasis; a process mediated by the expression of particular cytokines including interleukin 6 (IL6). It is unknown whether CTF-induced IL6 regulates the expression of MMPs, enzymes needed for tissue remodeling. DESIGN Human PDL cells were subjected to 10% elongation strain of CTF at a frequency of 60 rpm continuously for 6 h. RNA and proteins were extracted and analyzed for IL6 and MMP expression by quantitative real-time PCR and ELISA, respectively. Using a neutralizing anti-IL6 antibody and addition of recombinant human IL6 at concentrations of 0.1, 1, 10 ng.mL-1 were performed to clarify whether CTF-upregulated IL6 increased MMP expression. Inhibitors of intracellular signaling molecules were employed to reveal possible pathway(s) of IL6-induced MMP expression. RESULTS CTF-induced IL6 expression coincided with an increased MMP3 expression. A neutralizing anti-IL6 antibody attenuated the CTF-increased MMP3 expression, whereas stimulating the cells with recombinant human IL6 increased MMP3 expression. Both PI3K and MAPK pathways were essential in the IL6 induced expression of MMP3. CONCLUSION Our findings suggest a role of CTF in the modulation of expression of IL6 and MMP3 and thus in the regulation of homeostasis and remodeling of the periodontal ligament.
Collapse
Affiliation(s)
- Yanee Tantilertanant
- Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jitti Niyompanich
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Pitt Supaphol
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Neeracha Sanchavanakit
- Department of Anatomy and Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
9
|
Narimiya T, Wada S, Kanzaki H, Ishikawa M, Tsuge A, Yamaguchi Y, Nakamura Y. Orthodontic tensile strain induces angiogenesis via type IV collagen degradation by matrix metalloproteinase-12. J Periodontal Res 2017; 52:842-852. [PMID: 28393366 DOI: 10.1111/jre.12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE During orthodontic tooth movement (OTM), periodontal ligament (PDL) is remodeled dynamically, which requires sufficient blood supply for the regeneration of PDL. However, little is known about the remodeling of blood vessels during OTM. In this study, we hypothesized that the orthodontic tensile strain upregulates matrix metalloproteinase-12 (MMP-12) expression in the tension zone and induces angiogenesis via degradation of type IV collagen (Col-IV) in vascular endothelial basement membrane during the early stage of OTM. MATERIAL AND METHODS Temporal and spatial MMP-12 expression in the tension zone of PDL, during the early stage of OTM, were examined by immunohistochemistry in rats. Continuous tensile strain was applied to cultured human immortalized PDL cell lines (HPL cells) and MMP-12 expression was examined in vitro. Colocalization of MMP-12 and Col-IV in vivo were examined by immunohistochemistry. To investigate whether MMP-12 produced by HPL cells could degrade Col-IV, recombinant Col-IV was incubated in the culture supernatants of HPL cells. Intact Col-IV in vitro was also examined by western blot analysis. Finally, the changes in blood vessels in the PDL were examined by micro-computed tomography analysis with perfused contrast agents and by conventional histological analysis. RESULTS Orthodontic tensile strain induced MMP-12 expression in PDL cells in vivo and in vitro. Immunohistochemistry revealed that MMP-12-positive cells were observed adjacent to the Col-IV-positive tubular area in the tension zone of PDL. MMP-12 in culture supernatant of HPL cells degraded recombinant Col-IV, and specific MMP-12 inhibitor blocked the Col-IV degradation. Micro-computed tomography analysis and conventional histological analysis demonstrated that the areas of blood vessels were increased in the tension zone of the PDL after OTM. CONCLUSION We discovered that the orthodontic tensile strain upregulates MMP-12 expression in the tension zone of PDL and induces angiogenesis via degradation of Col-IV in the vascular endothelial basement membrane.
Collapse
Affiliation(s)
- T Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - S Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - H Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - M Ishikawa
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - A Tsuge
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - Y Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| | - Y Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, Japan
| |
Collapse
|
10
|
Ahn HJ, Nam OH, Lee HS, Kim EC, Cohenca N, Choi SC. Expression of inflammatory cytokines and MMPs on replanted teeth at different extra-alveolar time: an ex vivo and in vivo study. Int J Paediatr Dent 2016; 26:301-9. [PMID: 26547906 DOI: 10.1111/ipd.12211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Immediately after the avulsed tooth is replanted, a complex inflammatory response ensues. As part of the periodontium healing process, the extracellular matrix macromolecules are essential to create the cellular environment required during healing and morphogenesis. AIM This study was designed to evaluate the correlation between different extra-alveolar dry times and inflammatory cytokines and matrix metalloproteinases (MMPs) as part of the periodontal ligament (PDL) gene expression. DESIGN The first phase of the study aimed testing human PDL cells ex vivo. Extracted teeth were dried for 15 and 30 min. The PDL cells were extracted and analyzed by qRT-PCR. The second phase was performed in vivo, and 36 Sprague Dawley rat first maxillary molars were extracted and replanted after 15, 30, and 60 min extra-alveolar time. We tested the levels of inflammatory cytokines and MMPS in periodontal tissue at 3, 7, and 28 days after tooth replantation. The replanted area was dissected, grounded, and analyzed by RT-PCR. RESULTS Expressions of IL-1β, IL-6, TNF-α, and MMP-3 and MMP-9 were significantly higher in the replanted teeth. Extended dry time had a direct correlation with induction of pro-inflammatory cytokine and MMPs in PDL cells. CONCLUSION Our study showed that pro-inflammatory cytokines were more significantly expressed in the tissues surrounding the replanted teeth. Future research must be undertaken to additionally confirm the release of these cytokines and be focused on the inhibition of these cytokines to reduce inflammation of replanted teeth.
Collapse
Affiliation(s)
- Hyo Jung Ahn
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Eun-Cheol Kim
- Maxillofacial Tissue Regeneration and Research Center for Tooth & Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Nestor Cohenca
- Department of Endodontics and Pediatric Dentistry, University of Washington, Seattle, WA, USA
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Rangiani A, Jing Y, Ren Y, Yadav S, Taylor R, Feng JQ. Critical roles of periostin in the process of orthodontic tooth movement. Eur J Orthod 2015; 38:373-8. [PMID: 26446403 DOI: 10.1093/ejo/cjv071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AIM The process of orthodontic tooth movement (OTM) involves multiple mechanisms of action including bone and extracellular matrix remodelling, although the role of periodontal ligament (PDL) in this process is largely unknown. Periostin, which is highly expressed in the PDL, is known to be responsible for mechanical stimulation in maintaining the integrity of periodontal tissues. We hypothesize that this protein plays an important role during OTM. MATERIAL AND METHODS By using spring in 4-week-old wild-type (WT) and periostin null mice, the rate of tooth movement and mineralization were evaluated. For the evaluation, double labelling, expression of sclerostin (SOST), number of TRAP-positive cells, and quality of collagen fibrils by Sirius red were analysed and compared between these two groups. RESULTS Our findings showed that the distance of the tooth movement and mineral deposition rates were significantly reduced in periostin null mice (P < 0.05), with a lack of expression changes in SOST as observed in the WT group. The arrangement, digestion, and integrity of collagen fibrils were impaired in periostin null mice. The number of osteoclasts reflected by expressions of TRAP (tartrate-resistant acid phosphatase) in the null mice was also significantly lower than the WT control (P < 0.05). CONCLUSION Periostin plays a stimulatory role in both SOST and TRAP responses to OTM in the compassion site, although it is not clear if this role is direct or indirect during orthodontic loading.
Collapse
Affiliation(s)
- Afsaneh Rangiani
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA, Division of Orthodontics, University of Connecticut Health Center, Farmington, CT, USA, and
| | - Yan Jing
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - Sumit Yadav
- Division of Orthodontics, University of Connecticut Health Center, Farmington, CT, USA, and
| | - Reginald Taylor
- Department of Orthodontics, Texas A&M Baylor College of Dentistry, Dallas, TX, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M Baylor College of Dentistry, Dallas, TX, USA,
| |
Collapse
|
12
|
Heckler A, Mirzaei Z, Pereira I, Simmons C, Gong SG. Development of a three-dimensional in vitro model system to study orthodontic tooth movement. Arch Oral Biol 2013; 58:1498-510. [DOI: 10.1016/j.archoralbio.2013.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
|
13
|
Ingman T, Apajalahti S, Rice D, Sorsa T. Gingival Crevicular Fluid, Matrix Metalloproteinases, and Their Bioactive Regulators as Potential Adjunctive Chair-Side Point-of-Care Biomarkers in Orthodontic Tooth Movement. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Chen YJ, Jeng JH, Chang HH, Huang MY, Tsai FF, Yao CCJ. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J Periodontal Res 2012. [PMID: 23190051 DOI: 10.1111/jre.12028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Mechanical stretching modulates extracellular matrix (ECM) protein synthesis by periodontal ligament (PDL) cells. However, the mechanoregulation of lysyl oxidase (LOX), a key enzyme for collagen cross-linking, is not fully understood. In the present study, we hypothesized that low-level and high-level mechanical stretching differentially regulates collagen deposition and the expression of LOX and the enzymes responsible for ECM degradation, such as MMP-2 in PDL cells. MATERIAL AND METHODS Human PDL cells were cultured on flexible-bottom culture plates and subjected to cyclic mechanical stretching (3% and 10% elongation at 0.1 Hz) for 24 and 48 h in a Flexercell FX-4000 strain unit. The levels of expression of type I collagen alpha 1 (COL1A1), type III collagen alpha 1 (COL3A1), lysyl oxidase (LOX), MMP2 and TIMP2 mRNAs were analyzed using an RT-PCR technique. The cell layer and the culture medium were separately collected and processed for detection of the following ECM-related molecules: (i) total collagen content using a Sircol dye-binding method; (ii) LOX protein expression by western blotting; (iii) LOX activity using a fluorometric assay; and (iv) MMP-2 enzyme activity by gelatin zymography. RESULTS Low-level (3%) mechanical stretching of PDL cells upregulated the expression of COL1A1, COL3A1 and LOX mRNAs, enhanced the production of collagen and increased the LOX activity but did not change the level of expression of MMP2 or TIMP2 mRNA. The collagen content and LOX activity showed obvious elevation in the medium, but not in the cell layer. High-level (10%) mechanical stretching downregulated COL1A1 mRNA but upregulated COL3A1 mRNA; however, the effect on COL3A1 was smaller, and occurred earlier, compared with the effect on the COL1A1 gene. High-level mechanical stretching upregulated the expression of MMP2 and TIMP2 mRNAs but did not change collagen production or LOX activity. Moreover, high-level mechanical stretching increased the level of pro-MMP-2, especially in the cell layer. CONCLUSIONS This study substantiates the mechanoregulation of the expression of ECM-related molecules in PDL cells. High-level mechanical stretching upregulated the expression of MMP2 and TIMP2 mRNAs, but did not affect collagen production or LOX activity. In addition to increasing the transcription of COL1A1, COL3A1 and LOX genes, low-level mechanical stretching enhanced total collagen production and LOX activity, which should favor ECM stabilization. As an effective regulator of ECM remodeling, mechanical stretching can be exploited in periodontal regeneration and ligament tissue engineering via application of appropriate mechanical stimulation.
Collapse
Affiliation(s)
- Y-J Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z. Analysis of time-course gene expression profiles of a periodontal ligament tissue model under compression. Arch Oral Biol 2012; 58:511-22. [PMID: 23116693 DOI: 10.1016/j.archoralbio.2012.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/29/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We recently reported establishment of a periodontal ligament (PDL) tissue model, which may mimic the biological behaviour of human PDL under static compression in orthodontic tooth movement (OTM). In the present study, we aimed at investigating the time-course gene expression profiles of the PDL tissue model under compression. DESIGN The PDL tissue model was established through 3-D-culturing human PDL cells (PDLCs) in a thin sheet of porous poly lactic-co-glycolic acid (PLGA) scaffolds, which was subjected to 25g/cm(2) static compression for 6, 24 and 72h respectively. After that, its gene expression profiles were investigated using microarray assay, followed by signalling pathway and gene ontology (GO) analysis. Real-time RT-PCR verification was done for 15 identified genes of interest. The cell proliferation alteration was detected through EdU labelling. RESULTS (1) Among the genes identified as differentially expressed, there were numerous osteoclastogenesis inducers (including CCL20, COX-1, COX-2, RANKL, PTHrP, IL-11, IL-8, etc.), osteoclastogenesis inhibitors (including IL-1Ra, NOG, OPG, etc.), and other potential bone remodelling regulators (including STC1, CYR61, FOS, etc.). (2) According to analysis of the microarray data, the most significant pathways included Cytokine-cytokine receptor interaction (containing CCL20, RANKL, IL-11, IL-8, etc.), MAPK (containing FGF7, FOS, MAP3K8, JUN, etc.) and Cell cycle (containing CDK1, CCNA2, etc.); the most significant GOs included Cell-cell signalling (containing CCL20, STC1, FGF7, PTHrP, IL-11, IL-8, etc.), Extracellular space (containing CCL20, IL-1Ra, NOG, PTHrP, IL-11, IL-8, etc.) and Microtubule-based movement (containing KIF11, KIF23, etc.). (3) After prolonged compression, cell proliferation was significantly inhibited. CONCLUSION The present findings have expanded our understandings to the roles that PDL plays under static compression in OTM.
Collapse
Affiliation(s)
- Yu Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School and Hospital of Stomatology, Sichuan University, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hammad SM, El-Hawary YM, El-Hawary AK. The use of different analgesics in orthodontic tooth movements. Angle Orthod 2012; 82:820-6. [DOI: 10.2319/110911-691.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Capelli J, Kantarci A, Haffajee A, Teles RP, Fidel R, Figueredo CM. Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement. Eur J Orthod 2011; 33:705-11. [PMID: 21389074 DOI: 10.1093/ejo/cjq148] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Matrix metalloproteinases (MMPs) and monocyte chemoattractants are key modulators of the biological mechanisms triggered in the periodontium by mechanical forces. The gingival crevicular fluid (GCF) provides a non-invasive method to assess longitudinally the release of inflammatory mediators during orthodontic tooth movement. The goal of this study was to examine the GCF levels of MMP-3, MMP-9, and MMP-13 and of the chemokines macrophage inflammatory protein (MIP)-1β, monocyte chemoattractant protein (MCP)-1, and regulated on activation normal T cells expressed and secreted (RANTES) at different time points during orthodontic tooth movement. Fourteen subjects (three males and 11 females, 18.8 ± 4.8 years of age; range from 12 to 28 years) had their maxillary canines retracted. Thirty-second GCF samples were collected from the tension and pressure sides 7 days prior to the activation of the orthodontic appliance, on the day of activation, and after 1 and 24 hours, and 14, 21, and 80 days of constant force application. The volume of GCF was measured and samples analysed using a multiplexed bead immunoassay for the content of the six target molecules. Differences in the mean GFC volumes and mean level for each analyte over time were assessed using the Friedman test, and differences between the tension and pressure sides at each time point with the Mann-Whitney test. The mean levels of the three MMPs changed significantly over time but only at the compression side (P < 0.05, Friedman test). The GCF levels of the three chemokines were not affected by the application of mechanical stress. The levels of MMPs in GCF at the pressure side are modulated by the application of orthodontic force.
Collapse
Affiliation(s)
- Jonas Capelli
- Department of Orthodontics, Rio de Janeiro State University, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Differential induction of collagens by mechanical stress in human periodontal ligament cells. Arch Oral Biol 2010; 55:981-7. [DOI: 10.1016/j.archoralbio.2010.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/30/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022]
|
19
|
Vardimon AD, Robbins D, Brosh T. In-vivo von Mises strains during Invisalign treatment. Am J Orthod Dentofacial Orthop 2010; 138:399-409. [DOI: 10.1016/j.ajodo.2008.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/01/2008] [Accepted: 11/01/2008] [Indexed: 02/02/2023]
|
20
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang CM, Hsieh HL, Yao CC, Hsiao LD, Tseng CP, Wu CB. Protein kinase C-delta transactivates platelet-derived growth factor receptor-alpha in mechanical strain-induced collagenase 3 (matrix metalloproteinase-13) expression by osteoblast-like cells. J Biol Chem 2009; 284:26040-50. [PMID: 19633290 DOI: 10.1074/jbc.m109.040154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase-13 (MMP-13, or collagenase 3) has been shown to degrade intact collagen and to participate in situations where rapid and effective remodeling of collagenous ECM is required. Mechanical strain induction of MMP-13 is an example of how osteoblasts respond to high mechanical forces and participate in the bone-remodeling mechanism. Using MC3T3-E1 osteoblast-like cells, we dissected the signaling molecules involved in MMP-13 induction by mechanical strain. Reverse transcription-PCR and zymogram analysis showed that platelet-derived growth factor receptor (PDGFR) inhibitor, AG1296, inhibited the mechanical strain-induced MMP-13 gene and activity. However, the induction was not affected by anti-PDGF-AA serum. Immunoblot analysis revealed time-dependent phosphorylation of PDGFR-alpha up to 2.7-fold increases within 3 min under strain. Transfection with shPDGFR-alpha (at 4 and 8 microg/ml) abolished PDGFR-alpha and reduced MMP-13 expression. Moreover, time-dependent recruitments of phosphoinositide 3-kinase (PI3K) by PDGFR-alpha were detected by immunoprecipitation with anti-PDGFR-alpha serum followed by immunoblot with anti-PI3K serum. AG1296 inhibited PDGFR-alpha/PI3K aggregation and Akt phosphorylation. Interestingly, protein kinase C-delta (PKC-delta) inhibitor, rottlerin, inhibited not only PDGFR-alpha/PI3K aggregation but PDGFR-alpha phosphorylation. The sequential activations were further confirmed by mutants DeltaPKC-delta, DeltaAkt, and DeltaERK1. Consistently, the primary mouse osteoblast cells used the same identified signaling molecules to express MMP-13 under mechanical strain. These results demonstrate that, in osteoblast-like cells, the MMP-13 induction by mechanical strain requires the transactivation of PDGFR-alpha by PKC-delta and the cross-talk between PDGFR-alpha/PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Ruiz C, Abril N, Tarín JJ, García-Pérez MA, Cano A. The new frontier of bone formation: a breakthrough in postmenopausal osteoporosis? Climacteric 2009; 12:286-300. [PMID: 19415543 DOI: 10.1080/13697130902736939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Osteoporosis is a chronic disease that accelerates after menopause in many women. Most of the pharmacologic attempts to control the disease, such as hormone therapy, have emphasized the constraint of bone resorption. Since recent years have witnessed important advances in the field of bone formation, this review aims to update the present knowledge on the mechanisms affecting osteoblastogenesis and on the therapeutic results achieved by recently approved drugs. METHOD We sought peer-reviewed, full-length basic and clinical articles published between 1995 and May 2008 using a PubMed search strategy, with the terms osteoporosis and osteoblast, osteoporosis and strontium ranelate, and osteoporosis and parathyroid hormone (PTH). This search was further supplemented by a hand-search of reference lists of selected review papers. After crossing-cleaning the reference lists, some 800 articles were selected. Articles on regulators of osteoblast differentiation and function, together with well-designed clinical studies, were surveyed. RESULTS A complex network of systemic and local factors regulates osteoblastogenesis. Advances in fracture protection have been published in clinical studies with PTH. Some investigators claim an anabolic effect for strontium ranelate, which also confers protection against fracture. CONCLUSION The control of bone formation offers new clinical potential. Stimulation of bone formation by PTH has translated into fracture protection. The action of strontium ranelate has been claimed to be mediated by some level of bone formation, but this hypothesis still needs clarification.
Collapse
Affiliation(s)
- C Ruiz
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, Valencia, Spain
| | | | | | | | | |
Collapse
|