1
|
van der Groen O, Latella C, Nosaka K, Edwards D, Teo WP, Taylor JL. Corticospinal and intracortical responses from both motor cortices following unilateral concentric versus eccentric contractions. Eur J Neurosci 2023; 57:619-632. [PMID: 36512398 DOI: 10.1111/ejn.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
Cross-education is the phenomenon where training of one limb can cause neuromuscular adaptations in the opposite untrained limb. This effect has been reported to be greater after eccentric (ECC) than concentric (CON) strength training; however, the underpinning neurophysiological mechanisms remain unclear. Thus, we compared responses to transcranial magnetic stimulation (TMS) in both motor cortices following single sessions of unilateral ECC and CON exercise of the elbow flexors. Fourteen healthy adults performed three sets of 10 ECC and CON right elbow flexor contractions at 75% of respective maximum on separate days. Elbow flexor maximal voluntary isometric contraction (MVIC) torques were measured before and after exercise, and responses to single- and paired-pulse TMS were recorded from the non-exercised left and exercised right biceps brachii. Pre-exercise and post-exercise responses for ECC and CON were compared by repeated measures analyses of variance (ANOVAs). MVIC torque of the exercised arm decreased (p < 0.01) after CON (-30 ± 14%) and ECC (-39 ± 13%) similarly. For the non-exercised left biceps brachii, resting motor threshold (RMT) decreased after CON only (-4.2 ± 3.9% of maximum stimulator output [MSO], p < 0.01), and intracortical facilitation (ICF) decreased (-15.2 ± 20.0%, p = 0.038) after ECC only. For the exercised right biceps, RMT increased after ECC (8.6 ± 6.2% MSO, p = 0.014) but not after CON (6.4 ± 8.1% MSO, p = 0.066). Thus, unilateral ECC and CON elbow flexor exercise modulated excitability differently for the non-exercised hemisphere. These findings suggest that responses after a single bout of exercise may not reflect longer term adaptations.
Collapse
Affiliation(s)
- Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Christopher Latella
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
| | - Dylan Edwards
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Janet L Taylor
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.,Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Neuroscience Research Australia, Randwick, Australia
| |
Collapse
|
2
|
Tallent J, Woodhead A, Frazer AK, Hill J, Kidgell DJ, Howatson G. Corticospinal and spinal adaptations to motor skill and resistance training: Potential mechanisms and implications for motor rehabilitation and athletic development. Eur J Appl Physiol 2021; 121:707-719. [PMID: 33389142 DOI: 10.1007/s00421-020-04584-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Optimal strategies for enhancing strength and improving motor skills are vital in athletic performance and clinical rehabilitation. Initial increases in strength and the acquisition of new motor skills have long been attributed to neurological adaptations. However, early increases in strength may be predominantly due to improvements in inter-muscular coordination rather than the force-generating capacity of the muscle. Despite the plethora of research investigating neurological adaptations from motor skill or resistance training in isolation, little effort has been made in consolidating this research to compare motor skill and resistance training adaptations. The findings of this review demonstrated that motor skill and resistance training adaptations show similar short-term mechanisms of adaptations, particularly at a cortical level. Increases in corticospinal excitability and a release in short-interval cortical inhibition occur as a result of the commencement of both resistance and motor skill training. Spinal changes show evidence of task-specific adaptations from the acquired motor skill, with an increase or decrease in spinal reflex excitability, dependant on the motor task. An increase in synaptic efficacy of the reticulospinal projections is likely to be a prominent mechanism for driving strength adaptations at the subcortical level, though more research is needed. Transcranial electric stimulation has been shown to increase corticospinal excitability and augment motor skill adaptations, but limited evidence exists for further enhancing strength adaptations from resistance training. Despite the logistical challenges, future work should compare the longitudinal adaptations between motor skill and resistance training to further optimise exercise programming.
Collapse
Affiliation(s)
- Jamie Tallent
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK.
| | - Alex Woodhead
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Jessica Hill
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, Faculty of Natural and Agricultural Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: A systematic review. Phys Ther Sport 2019; 40:143-152. [DOI: 10.1016/j.ptsp.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
4
|
Mani D, Feeney DF, Enoka RM. The modulation of force steadiness by electrical nerve stimulation applied to the wrist extensors differs for young and older adults. Eur J Appl Physiol 2018; 119:301-310. [DOI: 10.1007/s00421-018-4025-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
|
5
|
Hamilton LD, Mani D, Almuklass AM, Davis LA, Vieira T, Botter A, Enoka RM. Electrical nerve stimulation modulates motor unit activity in contralateral biceps brachii during steady isometric contractions. J Neurophysiol 2018; 120:2603-2613. [PMID: 30156959 DOI: 10.1152/jn.00235.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of our study was to compare the influence of five types of electrical nerve stimulation delivered through electrodes placed over the right biceps brachii on motor unit activity in the left biceps brachii during an ongoing steady isometric contraction. The electrical stimulation protocols comprised different combinations of pulse duration (0.2 and 1.0 ms), stimulus frequency (50 and 90 Hz), and stimulus current (greater or less than motor threshold). The electrical nerve stimulation protocols were applied over the muscle of the right elbow flexors of 13 participants (26 ± 3 yr) while they performed voluntary contractions with the left elbow flexors to match a target force set at 10% of maximum. All five types of electrical nerve stimulation increased the absolute amplitude of the electromyographic (EMG) signal recorded from the left biceps brachii with high-density electrodes. Moreover, one stimulation condition (1 ms, 90 Hz) had a consistent influence on the centroid location of the EMG amplitude distribution and the average force exerted by the left elbow flexors. Another stimulation condition (0.2 ms, 90 Hz) reduced the coefficient of variation for force during the voluntary contraction, and both low-frequency conditions (50 Hz) increased the duration of the mean interspike interval of motor unit action potentials after the stimulation had ended. The findings indicate that the contralateral effects of electrical nerve stimulation on the motor neuron pool innervating the homologous muscle can be influenced by both stimulus pulse duration and stimulus frequency. NEW & NOTEWORTHY Different types of electrical nerve stimulation delivered through electrodes placed over the right biceps brachii modulated the ongoing motor unit activity in the left biceps brachii. Although the effects varied with stimulus pulse duration, frequency, and current, all five types of electrical nerve stimulation increased the amplitude of the electromyographic activity in the left biceps brachii. Moreover, most of the effects in the left arm occurred after the electrical nerve stimulation of the right arm had been terminated.
Collapse
Affiliation(s)
- Landon D Hamilton
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Diba Mani
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Awad M Almuklass
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - Leah A Davis
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Taian Vieira
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Torino , Italy
| | - Alberto Botter
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Torino , Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| |
Collapse
|
6
|
Brandner CR, Warmington SA, Kidgell DJ. Corticomotor Excitability is Increased Following an Acute Bout of Blood Flow Restriction Resistance Exercise. Front Hum Neurosci 2015; 9:652. [PMID: 26696864 PMCID: PMC4667065 DOI: 10.3389/fnhum.2015.00652] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022] Open
Abstract
We used transcranial magnetic stimulation (TMS) to investigate whether an acute bout of resistance exercise with blood flow restriction (BFR) stimulated changes in corticomotor excitability (motor evoked potential, MEP) and short-interval intracortical inhibition (SICI), and compared the responses to two traditional resistance exercise methods. Ten males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (1) heavy-load (HL: 80% one-repetition maximum [1-RM]); (2) light-load (LL; 20% 1-RM) and two other light-load trials with BFR applied; (3) continuously at 80% resting systolic blood pressure (BFR-C); or (4) intermittently at 130% resting systolic blood pressure (BFR-I). MEP amplitude and SICI were measured using TMS at baseline, and at four time-points over a 60 min post-exercise period. MEP amplitude increased rapidly (within 5 min post-exercise) for BFR-C and remained elevated for 60 min post-exercise compared with all other trials. MEP amplitudes increased for up to 20 and 40 min for LL and BFR-I, respectively. These findings provide evidence that BFR resistance exercise can modulate corticomotor excitability, possibly due to altered sensory feedback via group III and IV afferents. This response may be an acute indication of neuromuscular adaptations that underpin changes in muscle strength following a BFR resistance training programme.
Collapse
Affiliation(s)
- Christopher Roy Brandner
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne, Burwood, VIC, Australia ; Talent Identification Unit, Sport Science Department, Aspire Academy Doha, Qatar
| | - Stuart Anthony Warmington
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne, Burwood, VIC, Australia
| | - Dawson John Kidgell
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University Melbourne, VIC, Australia
| |
Collapse
|
7
|
Leung M, Rantalainen T, Teo WP, Kidgell D. Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience 2015; 305:99-108. [DOI: 10.1016/j.neuroscience.2015.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/08/2023]
|
8
|
Amiridis IG, Mani D, Almuklass A, Matkowski B, Gould JR, Enoka RM. Modulation of motor unit activity in biceps brachii by neuromuscular electrical stimulation applied to the contralateral arm. J Appl Physiol (1985) 2015; 118:1544-52. [PMID: 25930023 PMCID: PMC4469921 DOI: 10.1152/japplphysiol.00031.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 01/06/2023] Open
Abstract
The purpose of the study was to determine the influence of neuromuscular electrical stimulation (NMES) current intensity and pulse width applied to the right elbow flexors on the discharge characteristics of motor units in the left biceps brachii. Three NMES current intensities were applied for 5 s with either narrow (0.2 ms) or wide (1 ms) stimulus pulses: one at 80% of motor threshold and two that evoked contractions at either ∼10% or ∼20% of maximal voluntary contraction (MVC) force. The discharge times of 28 low-threshold (0.4-21.6% MVC force) and 16 high-threshold (31.7-56.3% MVC force) motor units in the short head of biceps brachii were determined before, during, and after NMES. NMES elicited two main effects: one involved transient deflections in the left-arm force at the onset and offset of NMES and the other consisted of nonuniform modulation of motor unit activity. The force deflections, which were influenced by NMES current intensity and pulse width, were observed only when low-threshold motor units were tracked. NMES did not significantly influence the discharge characteristics of tracked single-threshold motor units. However, a qualitative analysis indicated that there was an increase in the number of unique waveforms detected during and after NMES. The findings indicate that activity of motor units in the left elbow flexors can be modulated by NMES current and pulse width applied to right elbow flexors, but the effects are not distributed uniformly to the involved motor units.
Collapse
Affiliation(s)
- Ioannis G Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece;
| | - Diba Mani
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Awad Almuklass
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Boris Matkowski
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Jeffrey R Gould
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado; and
| |
Collapse
|
9
|
Contralaterally controlled functional electrical stimulation for recovery of elbow extension and hand opening after stroke: a pilot case series study. Am J Phys Med Rehabil 2014; 93:528-39. [PMID: 24508938 DOI: 10.1097/phm.0000000000000066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aims of this study were to determine whether patients with moderate-to-severe upper limb hemiplegia could use contralaterally controlled functional electrical stimulation at the arm and hand (Arm+Hand CCFES) at home and to evaluate the feasibility of Arm+Hand CCFES to reduce arm and hand motor impairment. DESIGN With Arm+Hand CCFES, the paretic elbow and hand extensors were stimulated with intensities proportional to the degree of elbow extension and hand opening, respectively, of the contralateral unimpaired side. For 12 wks, four participants with chronic (≥6 mos) upper limb hemiplegia received ∼7 hrs per week of self-administered home-based stimulation-mediated elbow extension and hand opening exercise plus ∼2.5 hrs per week of therapist-supervised laboratory-based stimulation-assisted functional task practice. Assessments of upper limb impairment were made at pretreatment, posttreatment, and 1 mo after treatment. RESULTS All four participants were able to use the Arm+Hand CCFES system at home either independently or with very minimal assistance from a caregiver. All four participants had increases in the Fugl-Meyer score (1-9 points) and the Wolf Motor Function Test (0.2-0.8 points) and varying degrees of improvement in maximum hand opening, maximum elbow extension, and simultaneous elbow extension and hand opening. CONCLUSIONS Arm+Hand CCFES can be successfully administered in stroke patients with moderate-to-severe impairment and can reduce various aspects of upper limb impairment. A larger efficacy study is warranted.
Collapse
|
10
|
Knutson JS, Harley MY, Hisel TZ, Makowski NS, Fu MJ, Chae J. Contralaterally controlled functional electrical stimulation for stroke rehabilitation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:314-7. [PMID: 23365893 DOI: 10.1109/embc.2012.6345932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES.
Collapse
Affiliation(s)
- Jayme S Knutson
- Cleveland Functional Electrical Stimulation Center, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Andrews RK, Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design. J Neuroeng Rehabil 2013; 10:51. [PMID: 23758902 PMCID: PMC3688368 DOI: 10.1186/1743-0003-10-51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In humans, corticospinal excitability is known to increase following motor electrical stimulation (ES) designed to mimic a voluntary contraction. However, whether the effect is equivalent with different application durations and whether similar effects are apparent for short and long applications is unknown. The aim of this study was to investigate whether the duration of peripheral motor ES influenced its effect on corticospinal excitability. METHODS The excitability of the corticomotor pathway to abductor pollicis brevis (APB) was measured in fourteen health subjects using transcranial magnetic stimulation before, immediately after and 10 minutes after three different durations (20-, 40-, 60-min) of motor ES (30Hz, ramped). This intervention was designed to mimic a voluntary contraction in APB. To control for effects of motor ES on the peripheral elements (muscle fibre, membrane, neuromuscular junction), maximum compound muscle actions potentials (M-waves) were also recorded at each time point. Results were analysed using a repeated measures analysis of variance. RESULTS Peripheral excitability was reduced following all three motor ES interventions. Conversely, corticospinal excitability was increased immediately following 20- and 40-min applications of motor ES and this increase was maintained at least 20-min following the intervention. A 60-min application of motor ES did not alter corticospinal excitability. CONCLUSIONS A 20-min application of motor ES that is designed to mimic voluntary muscle contraction is as effective as that applied for 40-min when the aim of the intervention is to increase corticospinal excitability. Longer motor ES durations of 60-min do not influence corticospinal excitability, possibly as a result of homeostatic plasticity mechanisms.
Collapse
Affiliation(s)
- Rebecca K Andrews
- School of Health and Rehabilitation Sciences and the NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|