1
|
Zhang B, Jin Z, Luo P, Yin H, Chen X, Yang B, Qin X, Zhu L, Xu B, Ma G, Zhang D. Ischemia-reperfusion injury after spinal cord decompressive surgery-An in vivo rat model. Animal Model Exp Med 2024. [PMID: 39225110 DOI: 10.1002/ame2.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Although decompression surgery is the optimal treatment for patients with severe degenerative cervical myelopathy (DCM), some individuals experience no improvement or even a decline in neurological function after surgery, with spinal cord ischemia-reperfusion injury (SCII) identified as the primary cause. Spinal cord compression results in local ischemia and blood perfusion following decompression is fundamental to SCII. However, owing to inadequate perioperative blood flow monitoring, direct evidence regarding the occurrence of SCII after decompression is lacking. The objective of this study was to establish a suitable animal model for investigating the underlying mechanism of spinal cord ischemia-reperfusion injury following decompression surgery for degenerative cervical myelopathy (DCM) and to elucidate alterations in neurological function and local blood flow within the spinal cord before and after decompression. METHODS Twenty-four Sprague-Dawley rats were allocated to three groups: the DCM group (cervical compression group, with implanted compression material in the spinal canal, n = 8), the DCM-D group (cervical decompression group, with removal of compression material from the spinal canal 4 weeks after implantation, n = 8), and the SHAM group (sham operation, n = 8). Von Frey test, forepaw grip strength, and gait were assessed within 4 weeks post-implantation. Spinal cord compression was evaluated using magnetic resonance imaging. Local blood flow in the spinal cord was monitored during the perioperative decompression. The rats were sacrificed 1 week after decompression to observe morphological changes in the compressed or decompressed segments of the spinal cord. Additionally, NeuN expression and the oxidative damage marker 8-oxoG DNA were analyzed. RESULTS Following spinal cord compression, abnormal mechanical pain worsened, and a decrease in forepaw grip strength was observed within 1-4 weeks. Upon decompression, the abnormal mechanical pain subsided, and forepaw grip strength was restored; however, neither reached the level of the sham operation group. Decompression leads to an increase in the local blood flow, indicating improved perfusion of the spinal cord. The number of NeuN-positive cells in the spinal cord of rats in the DCM-D group exceeded that in the DCM group but remained lower than that in the SHAM group. Notably, a higher level of 8-oxoG DNA expression was observed, suggesting oxidative stress following spinal cord decompression. CONCLUSION This model is deemed suitable for analyzing the underlying mechanism of SCII following decompressive cervical laminectomy, as we posit that the obtained results are comparable to the clinical progression of degenerative cervical myelopathy (DCM) post-decompression and exhibit analogous neurological alterations. Notably, this model revealed ischemic reperfusion in the spinal cord after decompression, concomitant with oxidative damage, which plausibly underlies the neurological deterioration observed after decompression.
Collapse
Affiliation(s)
- Boyu Zhang
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhefeng Jin
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengren Luo
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - He Yin
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Chen
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Yang
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaokuan Qin
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - LiGuo Zhu
- Sports medicine department 3, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Xu
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoliang Ma
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Dian Zhang
- Spine Department 2, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Martín-Palomeque G, Cabañes-Martínez L, López JR, Mateo Montero RC, Reyes A, Gandarias C, Regidor I. Usefulness of the H-Reflex for Intraoperative Monitoring of Thoracoabdominal Aneurysms. J Clin Neurophysiol 2024; 41:542-548. [PMID: 37255237 DOI: 10.1097/wnp.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
PURPOSE Intraoperative neurophysiologic monitoring in thoracoabdominal aneurysms (TAAA) is essential to avoid intraoperative spinal cord injury). Motor and somatosensory evoked potentials may be considered intraoperative tools for detecting spinal cord injury. H-reflex is a well-known neurophysiologic technique to evaluate L5-S1 root. Current evidence supports the observation that H-reflex changes may occur with spinal cord damage as high as the cervical level. This study aimed to evaluate the usefulness of the H-reflex in these surgeries. METHODS The use of intraoperative H-reflex in TAAA monitoring was evaluated in 12 patients undergoing open or endovascular repair of TAAA for a period of four years (2016-2020) using somatosensory evoked potentials (SSEPs) and transcranial motor evoked potentials (TcMEPs) and bilateral H-reflex. RESULTS Six neurophysiologic alarms were recorded in five of the 12 patients. Summarizing the neurophysiologic changes of our series, we considered a peripheral change when we detected a unilateral loss of SSEPs, TcMEPs, and H-reflex. Instead, we assumed a central change when we detected a unilateral or bilateral loss of TcMEPs and H-reflex with normal SSEPs, which we considered a sign of spinal cord ischemia. Interestingly H-reflex always changed significantly in combination with TcMEPs in the same fashion. CONCLUSIONS According to our series, H-reflex can detect intraoperative changes with the same sensitivity as TcMEPs in TAAA surgeries. With the support of other techniques, it can be useful to localize the origin of the lesion (peripheral or central spinal cord), to help in surgical decision-making to avoid postoperative neurologic damage. Based on our results, we recommend the systematic use of H-reflex in TAAA surgeries.
Collapse
Affiliation(s)
| | | | - Jaime R López
- Departments of Neurology and Neurological Sciences and Neurosurgery, Stanford University School of Medicine, Stanford, California, U.S.A.; and
| | | | - Andrés Reyes
- Department of Vascular and Endovascular Surgery, Hospital Ramón y Cajal, Madrid, Spain
| | - Claudio Gandarias
- Department of Vascular and Endovascular Surgery, Hospital Ramón y Cajal, Madrid, Spain
| | - Ignacio Regidor
- Department of Clinical Neurophysiology, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
3
|
Debenham MIB, Franz CK, Berger MJ. Neuromuscular consequences of spinal cord injury: New mechanistic insights and clinical considerations. Muscle Nerve 2024; 70:12-27. [PMID: 38477416 DOI: 10.1002/mus.28070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
The spinal cord facilitates communication between the brain and the body, containing intrinsic systems that work with lower motor neurons (LMNs) to manage movement. Spinal cord injuries (SCIs) can lead to partial paralysis and dysfunctions in muscles below the injury. While traditionally this paralysis has been attributed to disruptions in the corticospinal tract, a growing body of work demonstrates LMN damage is a factor. Motor units, comprising the LMN and the muscle fibers with which they connect, are essential for voluntary movement. Our understanding of their changes post-SCI is still emerging, but the health of motor units is vital, especially when considering innovative SCI treatments like nerve transfer surgery. This review seeks to collate current literature on how SCI impact motor units and explore neuromuscular clinical implications and treatment avenues. SCI reduced motor unit number estimates, and surviving motor units had impaired signal transmission at the neuromuscular junction, force-generating capacity, and excitability, which have the potential to recover chronically, yet the underlaying mechanisms are unclear. Furthermore, electrodiagnostic evaluations can aid in assessing the health lower and upper motor neurons, identify suitable targets for nerve transfer surgeries, and detect patients with time sensitive injuries. Lastly, many electrodiagnostic abnormalities occur in both chronic and acute SCI, yet factors contributing to these abnormalities are unknown. Future studies are required to determine how motor units adapt following SCI and the clinical implications of these adaptations.
Collapse
Affiliation(s)
- Mathew I B Debenham
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin K Franz
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, Illinois, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael J Berger
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Tan AQ, Tuthill C, Corsten AN, Barth S, Trumbower RD. A single sequence of intermittent hypoxia does not alter stretch reflex excitability in able-bodied individuals. Exp Physiol 2024; 109:576-587. [PMID: 38356241 PMCID: PMC10988685 DOI: 10.1113/ep091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Christopher Tuthill
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Anthony N. Corsten
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Stella Barth
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Randy D. Trumbower
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| |
Collapse
|
5
|
Onate-Figuérez A, Soto-León V, Avendaño-Coy J, Mordillo-Mateos L, Pérez-Borrego YA, Redondo-Galán C, Arias P, Oliviero A. Hand Motor Fatigability Induced by a Simple Isometric Task in Spinal Cord Injury. J Clin Med 2022; 11:jcm11175108. [PMID: 36079035 PMCID: PMC9457081 DOI: 10.3390/jcm11175108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed: (1) to evaluate the hand motor fatigability in people with spinal cord injury (SCI) and compare it with measurements obtained form an able-bodied population; (2) to compare the hand motor fatigability in people with tetraplegia and in people with paraplegia; and (3) to analyse if motor fatigability is different in people with SCI with and without clinical significant perceived fatigability. Materials and Methods: 96 participants with SCI (40 cervical and 56 thoracolumbar) and 63 able-bodied controls performed a simple hand isometric task to assess motor fatigability. The Fatigue Severity Scale was used for perceived fatigability evaluation. Results: The main results of this study can be summarized as follows: (1) the waning in muscle force (motor fatigability) during a fatiguing task is similar in controls and participants with SCI; (2) the motor fatigability is influenced by the maximal muscle force (measured at the beginning of the task); and (3) the perceived fatigability and the motor fatigability are largely independent in the individuals with SCI. Conclusion: Our findings suggest that the capability to maintain a prolonged effort is preserved in SCI, and this capacity depends on the residual maximal muscle force in people with SCI.
Collapse
Affiliation(s)
- Ana Onate-Figuérez
- FENNSI Group, National Hospital for Paraplegics, SESCAM, 45071 Toledo, Spain
- Department of Physiotherapy, Universidad de Castilla La Mancha, 45071 Toledo, Spain
- GIFTO Group, Faculty of Physiotherapy and Nursing, Universidad de Castilla La Mancha (UCLM), 45071 Toledo, Spain
| | - Vanesa Soto-León
- FENNSI Group, National Hospital for Paraplegics, SESCAM, 45071 Toledo, Spain
| | - Juan Avendaño-Coy
- Department of Physiotherapy, Universidad de Castilla La Mancha, 45071 Toledo, Spain
- GIFTO Group, Faculty of Physiotherapy and Nursing, Universidad de Castilla La Mancha (UCLM), 45071 Toledo, Spain
- Correspondence: (J.A.-C.); (A.O.)
| | - Laura Mordillo-Mateos
- FENNSI Group, National Hospital for Paraplegics, SESCAM, 45071 Toledo, Spain
- Department of Physiotherapy, Universidad de Castilla La Mancha, 45071 Toledo, Spain
| | | | - Carolina Redondo-Galán
- Rehabilitation Department, National Hospital for Paraplegics, SESCAM, 45071 Toledo, Spain
| | - Pablo Arias
- Universidade da Coruña, NEUROcom (Neuroscience and Motor Control Group), Department of Physiotherapy, Medicine and Biomedical Sciences-INEF Galicia, 15001 A Coruña, Spain
- Biomedical Institute of A Coruña (INIBIC), 15001 A Coruña, Spain
| | - Antonio Oliviero
- FENNSI Group, National Hospital for Paraplegics, SESCAM, 45071 Toledo, Spain
- Advanced Rehabilitation Unit, Hospital Los Madroños, 28690 Brunete, Spain
- Correspondence: (J.A.-C.); (A.O.)
| |
Collapse
|
6
|
Kishimoto KC, Héroux ME, Gandevia SC, Butler JE, Diong J. Estimation of maximal muscle electromyographic activity from the relationship between muscle activity and voluntary activation. J Appl Physiol (1985) 2021; 130:1352-1361. [PMID: 33600280 DOI: 10.1152/japplphysiol.00557.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maximal muscle activity recorded with surface electromyography (EMG) is an important neurophysiological measure. It is frequently used to normalize EMG activity recorded during passive or active movement. However, the true maximal muscle activity cannot be determined in people with impaired capacity to voluntarily activate their muscles. Here, we determined whether maximal muscle activity can be estimated from muscle activity produced during submaximal voluntary activation. Twenty-five able-bodied adults (18 males, mean age 29 yr, range 19-64 yr) participated in the study. Participants were seated with the knee flexed 90° and the ankle in 5° of dorsiflexion from neutral. Participants performed isometric voluntary ankle plantarflexion contractions at target torques, in random order: 1, 5, 10, 15, 25, 50, 75, 90, 95, and 100% of maximal voluntary torque. Ankle torque, muscle activity in soleus, medial and lateral gastrocnemius muscles, and voluntary muscle activation determined using twitch interpolation were recorded. There was a strong loge-linear relationship between measures of muscle activation and muscle activity in all three muscles tested. Linear mixed models were fitted to muscle activation and loge-transformed EMG data. Each 1% increase in muscle activation increased muscle activity by a mean of 0.027 ln(mV) [95% confidence interval (CI) 0.025 to 0.029 ln(mV)] in soleus, 0.025 ln(mV) [0.022 to 0.028 ln(mV)] in medial gastrocnemius, and 0.028 ln(mV) [0.026 to 0.030 ln(mV)] in lateral gastrocnemius. The relationship between voluntary muscle activation and muscle activity can be described with simple mathematical functions. In future, it should be possible to normalize recorded muscle activity using these types of functions.NEW & NOTEWORTHY Muscle activity is often normalized to maximal muscle activity; however, it is difficult to obtain accurate measures of maximal muscle activity in people with impaired voluntary neural drive. We determined the relationship between voluntary muscle activation and plantarflexor muscle activity across a broad range of muscle activation values in able-bodied people. The relationship between voluntary muscle activation and muscle activity can be described with simple mathematical functions capable of estimating maximal muscle activity.
Collapse
Affiliation(s)
- Kenzo C Kishimoto
- Discipline of Physiotherapy, Faculty of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin E Héroux
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Joanna Diong
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Discipline of Anatomy and Histology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Sandhu MS, Perez MA, Oudega M, Mitchell GS, Rymer WZ. Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury. Exp Neurol 2021; 342:113722. [PMID: 33932397 DOI: 10.1016/j.expneurol.2021.113722] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 01/16/2023]
Abstract
Spinal cord injuries (SCI) disrupt neural pathways between the brain and spinal cord, causing impairment of motor function and loss of independent mobility. Spontaneous plasticity in spared neural pathways improves function but is often insufficient to restore normal function. One unique approach to augment plasticity in spinal synaptic pathways is acute intermittent hypoxia (AIH), meaning brief exposure to mild bouts of low oxygen, interspersed with normoxia. While the administration of AIH elicits rapid plasticity and enhances volitional somatic motor output in the lower-limbs of people with incomplete SCI, it is not known if AIH-induced neuroplasticity is equally prevalent in spinal motor pathways regulating upper-extremity motor-function. In addition, how long the motor effects are retained following AIH has not yet been established. The goal of this research was to investigate changes in hand strength and upper-limb function elicited by episodic hypoxia, and to establish how long these effects were sustained in persons with incomplete cervical SCI. We conducted a randomized, blinded, placebo-controlled and cross-over design study consisting of a single AIH or sham AIH session in 14 individuals with chronic, incomplete cervical SCI. In a subset of six participants, we also performed a second protocol to determine the cumulative effects of repetitive AIH (i.e., two consecutive days). In both protocols, hand dynamometry and clinical performance tests were performed pre- and post-exposure. We found that a single AIH session enhanced bilateral grip and pinch strength, and that this effect peaked ~3 h post-intervention. The strength change was substantially higher after AIH versus sham AIH. These findings demonstrate the potential of AIH to improve upper-extremity function in persons with chronic SCI, although follow-up studies are needed to investigate optimal dosage and duration of effect.
Collapse
Affiliation(s)
- Milap S Sandhu
- Shirley Ryan Ability Lab, Northwestern University, Chicago, IL 60611, United States of America; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, United States of America.
| | - Monica A Perez
- Shirley Ryan Ability Lab, Northwestern University, Chicago, IL 60611, United States of America; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, United States of America; Edward Hines, Jr. VA Hospital, Hines, IL 60141, United States of America
| | - Martin Oudega
- Shirley Ryan Ability Lab, Northwestern University, Chicago, IL 60611, United States of America; Edward Hines, Jr. VA Hospital, Hines, IL 60141, United States of America; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States of America; Department of Physiology, Northwestern University, Chicago, IL 60611, United States of America
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America
| | - William Z Rymer
- Shirley Ryan Ability Lab, Northwestern University, Chicago, IL 60611, United States of America; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, United States of America
| |
Collapse
|
8
|
Dorneles JR, Neto FR, Gonçalves CW, Costa RRG, Carregaro RL. Does prolonged walking cause greater muscle fatigability in individuals with incomplete spinal cord injury compared with matched-controls? Gait Posture 2020; 78:65-71. [PMID: 32268249 DOI: 10.1016/j.gaitpost.2020.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individuals with incomplete spinal cord injury (iSCI) might show muscle fatigability during walking, primarily over long distances. The cause can be related to the motor impairment and walking compensations identified in this population. However, evidence on the occurrence of muscle fatigability after prolonged walking in individuals with iSCI is conflicting. RESEARCH QUESTION Does prolonged walking cause higher muscle fatigability in individuals with iSCI compared with matched-controls? METHODS We adopted a repeated measures design, in which maximal voluntary isometric contractions were performed before and after a walking test to induce the fatigability, in 24 individuals with iSCI and 24 matched-controls. Body weight-normalized peak torque (PT/BW), rate of force development (RFD), root mean square (RMS) and neuromuscular efficiency were used to assess the muscle fatigability. A mixed model ANOVA (2 × 2) was used for between-group and within-group comparisons. The significance was set in 5%. RESULTS Individuals with iSCI showed a greater decline in the PT/BW and RMS after the walking test. However, the RFD presented a greater decrease in the control group. SIGNIFICANCE Our results showed that prolonged walking caused higher muscle fatigability in individuals with iSCI compared to healthy individuals. Therefore, muscle fatigability should be considered during the rehabilitation planning and in activities of daily living of individuals with iSCI. Moreover, the identification of muscle fatigability in individuals with iSCI might be useful to prevent high levels of physical exertion and, possibly, the risk of fall.
Collapse
Affiliation(s)
- Jefferson Rodrigues Dorneles
- Master Program in Rehabilitation Sciences, Universidade De Brasília (UnB), Campus UnB Ceilândia, Brasília, Brazil; Spinal Cord Injury Department, Sarah Hospital Rehabilitation Network, Brasilia, Brazil
| | | | | | | | - Rodrigo Luiz Carregaro
- Master Program in Rehabilitation Sciences, Universidade De Brasília (UnB), Campus UnB Ceilândia, Brasília, Brazil.
| |
Collapse
|
9
|
Dongés SC, Boswell-Ruys CL, Butler JE, Taylor JL. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study. Spinal Cord 2019; 57:796-804. [PMID: 31086274 DOI: 10.1038/s41393-019-0291-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomised, controlled, crossover study. OBJECTIVES Paired corticospinal-motoneuronal stimulation (PCMS) involves repeatedly pairing stimuli to corticospinal neurones and motoneurones to induce changes in corticospinal transmission. Here, we examined whether PCMS could enhance maximal voluntary elbow flexion in people with cervical spinal cord injury. SETTING Neuroscience Research Australia, Sydney, Australia. METHODS PCMS comprised 100 pairs of transcranial magnetic and electrical peripheral nerve stimulation (0.1 Hz), timed so corticospinal potentials arrived at corticospinal-motoneuronal synapses 1.5 ms before antidromic motoneuronal potentials. On two separate days, sets of five maximal elbow flexions were performed by 11 individuals with weak elbow flexors post C4 or C5 spinal cord injury before and after PCMS or control (100 peripheral nerve stimuli) conditioning. During contractions, supramaximal biceps brachii stimulation elicited superimposed twitches, which were expressed as a proportion of resting twitches to give maximal voluntary activation. Maximal torque and electromyographic activity were also assessed. RESULTS Baseline median (range) maximal torque was 11 Nm (6-41 Nm) and voluntary activation was 92% (62-99%). Linear mixed modelling revealed no significant differences between PCMS and control protocols after conditioning (maximal torque: p = 0.87, superimposed twitch: p = 0.87, resting twitch: p = 0.44, voluntary activation: p = 0.36, biceps EMG: p = 0.25, brachioradialis EMG: 0.67). CONCLUSIONS Possible explanations for the lack of effect include a potential ceiling effect for voluntary activation, or that PCMS may be less effective for elbow flexors than distal muscles. Despite results, previous studies suggest that PCMS is worthy of further investigation.
Collapse
Affiliation(s)
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia.,Prince of Wales Hospital, Sydney, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Sydney, Australia. .,University of New South Wales, Sydney, Australia. .,Edith Cowan University, Perth, Australia.
| |
Collapse
|
10
|
Chuang YF, Chen CC, Hsu MJ, Huang NJ, Huang YZ, Chan HL, Chang YJ. Age related changes of the motor excitabilities and central and peripheral muscle strength. J Electromyogr Kinesiol 2018; 44:132-138. [PMID: 30640164 DOI: 10.1016/j.jelekin.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The purpose was to investigate the age effects on central versus peripheral sources of strength, fatigue, and central neural excitabilities. METHODS 42 healthy subjects were recruited as young group (23.73 ± 2.15 years; n = 26) and middle-aged group (57.25 ± 4.57 years; n = 16). Maximum voluntary contraction force (MVC), voluntary activation level (VA), and twitch force of quadriceps were evaluated to represent general, central, and peripheral strengths. Central and peripheral fatigue indexes were evaluated using femoral nerve electrical stimulation. Cortical excitabilities were evaluated using transcranial magnetic stimulation (TMS). RESULTS The middle-aged group had lower MVC and twitch force of quadriceps, but not VA, than young group. No between group differences were found in fatigue indexes. The cortical excitability in middle-aged group was different from young group in paired TMS with inter-stimulus interval of 7 ms. CONCLUSION The age-related strength loss at early stage was primarily caused by peripheral muscular strength. The deviation of central neural excitability can be detected but the activation level was not impaired in middle-age adults.
Collapse
Affiliation(s)
- Yu-Fen Chuang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chih-Chung Chen
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Miao-Ju Hsu
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University; Department of Physical Medicine and Rehabilitation, and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Nan-Jing Huang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, and School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiao-Lung Chan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Electrical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Chuang LL, Chuang YF, Hsu MJ, Huang YZ, Wong AMK, Chang YJ. Validity and reliability of the Traditional Chinese version of the Multidimensional Fatigue Inventory in general population. PLoS One 2018; 13:e0189850. [PMID: 29746466 PMCID: PMC5945051 DOI: 10.1371/journal.pone.0189850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/13/2018] [Indexed: 12/27/2022] Open
Abstract
Background Fatigue is a common symptom in the general population and has a substantial effect on individuals’ quality of life. The Multidimensional Fatigue Inventory (MFI) has been widely used to quantify the impact of fatigue, but no Traditional Chinese translation has yet been validated. The goal of this study was to translate the MFI from English into Traditional Chinese (‘the MFI-TC’) and subsequently to examine its validity and reliability. Methods The study recruited a convenience sample of 123 people from various age groups in Taiwan. The MFI was examined using a two-step process: (1) translation and back-translation of the instrument; and (2) examination of construct validity, convergent validity, internal consistency, test-retest reliability, and measurement error. The validity and reliability of the MFI-TC were assessed by factor analysis, Spearman rho correlation coefficient, Cronbach’s alpha coefficient, intraclass correlation coefficient (ICC), minimal detectable change (MDC), and Bland-Altman analysis. All participants completed the Short-Form-36 Health Survey Taiwan Form (SF-36-T) and the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) concurrently to test the convergent validity of the MFI-TC. Test-retest reliability was assessed by readministration of the MFI-TC after a 1-week interval. Results Factor analysis confirmed the four dimensions of fatigue: general/physical fatigue, reduced activity, reduced motivation, and mental fatigue. A four-factor model was extracted, combining general fatigue and physical fatigue as one factor. The results demonstrated moderate convergent validity when correlating fatigue (MFI-TC) with quality of life (SF-36-T) and sleep disturbances (PSQI) (Spearman's rho = 0.68 and 0.47, respectively). Cronbach’s alpha for the MFI-TC total scale and subscales ranged from 0.73 (mental fatigue subscale) to 0.92 (MFI-TC total scale). ICCs ranged from 0.85 (reduced motivation) to 0.94 (MFI-TC total scale), and the MDC ranged from 2.33 points (mental fatigue) to 9.5 points (MFI-TC total scale). The Bland-Altman analyses showed no significant systematic bias between the repeated assessments. Conclusions The results support the use of the Traditional Chinese version of the MFI as a comprehensive instrument for measuring specific aspects of fatigue. Clinicians and researchers should consider interpreting general fatigue and physical fatigue as one subscale when measuring fatigue in Traditional Chinese-speaking populations.
Collapse
Affiliation(s)
- Li-Ling Chuang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Fen Chuang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Miao-Ju Hsu
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Alice M. K. Wong
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, and Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2017; 119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting.
Collapse
Affiliation(s)
- Kristan A Leech
- Department of Neuroscience, Johns Hopkins University , Baltimore, Maryland
| | - Hyosub E Kim
- Department of Psychology, University of California at Berkeley , Berkeley, California
| | | |
Collapse
|
13
|
Fatigue and Muscle Strength Involving Walking Speed in Parkinson's Disease: Insights for Developing Rehabilitation Strategy for PD. Neural Plast 2017; 2017:1941980. [PMID: 28321339 PMCID: PMC5340986 DOI: 10.1155/2017/1941980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
Background. Problems with gait in Parkinson's disease (PD) are a challenge in neurorehabilitation, partly because the mechanisms causing the walking disability are unclear. Weakness and fatigue, which may significantly influence gait, are commonly reported by patients with PD. Hence, the aim of this study was to investigate the association between weakness and fatigue and walking ability in patients with PD. Methods. We recruited 25 patients with idiopathic PD and 25 age-matched healthy adults. The maximum voluntary contraction (MVC), twitch force, and voluntary activation levels were measured before and after a knee fatigue exercise. General fatigue, central fatigue, and peripheral fatigue were quantified by exercise-induced changes in MVC, twitch force, and activation level. In addition, subjective fatigue was measured using the Multidimensional Fatigue Inventory (MFI) and Fatigue Severity Scale (FSS). Results. The patients with PD had lower activation levels, more central fatigue, and more subjective fatigue than the healthy controls. There were no significant differences in twitch force or peripheral fatigue index between the two groups. The reduction in walking speed was related to the loss of peripheral strength and PD itself. Conclusion. Fatigue and weakness of central origin were related to PD, while peripheral strength was important for walking ability. The results suggest that rehabilitation programs for PD should focus on improving both central and peripheral components of force.
Collapse
|
14
|
Stutzig N, Siebert T. Assessment of the H-reflex at two contraction levels before and after fatigue. Scand J Med Sci Sports 2016; 27:399-407. [PMID: 26887575 DOI: 10.1111/sms.12663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
Abstract
The aim of the present study was to compare the H-reflex evoked at rest and at 20% maximal voluntary contraction (MVC) prior to and after fatiguing the lateral gastrocnemius (LG). The maximal H-reflex and M-wave were recorded in the LG, and soleus (SOL). Electrical evoked potentials were delivered to the posterior tibial nerve when muscles were inactivated and at 20% MVC. After fatigue, the Hmax /Mmax ratio of the fatigued LG was increased for both contraction levels (rest and 20% MVC) and remained unaltered for non-fatigued SOL. Before fatigue, the Hmax /Mmax ratio of SOL was enhanced at rest compared with the Hmax /Mmax ratio at 20% MVC. No differences were observed for LG. Fatigue of a single muscle leads to increased spinal reflex activity of the homonymous muscle. Contrary to previous recommendations in the literature, there appears to be no benefit with regard to the H-reflex amplitude in evoking electrical potentials during constant voluntary contractions at 20% MVC compared with inactivated muscles. The observed difference in SOL prior to fatigue was most likely due to hyperpolarization of the muscle fiber membrane.
Collapse
Affiliation(s)
- N Stutzig
- Department of Exercise Science, Institute of Sport- and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - T Siebert
- Department of Exercise Science, Institute of Sport- and Movement Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
15
|
Prak RF, Doestzada M, Thomas CK, Tepper M, Zijdewind I. Reduced voluntary drive during sustained but not during brief maximal voluntary contractions in the first dorsal interosseous weakened by spinal cord injury. J Appl Physiol (1985) 2015; 119:1320-9. [PMID: 26404618 DOI: 10.1152/japplphysiol.00399.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
In able-bodied (AB) individuals, voluntary muscle activation progressively declines during sustained contractions. However, few data are available on voluntary muscle activation during sustained contractions in muscles weakened by spinal cord injury (SCI), where greater force declines may limit task performance. SCI-related impairment of muscle activation complicates interpretation of the interpolated twitch technique commonly used to assess muscle activation. We attempted to estimate and correct for the SCI-related-superimposed twitch. Seventeen participants, both AB and with SCI (American Spinal Injury Association Impairment Scale C/D) produced brief and sustained (2-min) maximal voluntary contractions (MVCs) with the first dorsal interosseous. Force and electromyography were recorded together with superimposed (doublet) twitches. MVCs of participants with SCI were weaker than those of AB participants (20.3 N, SD 7.1 vs. 37.9 N, SD 9.5; P < 0.001); MVC-superimposed twitches were larger in participants with SCI (SCI median 10.1%, range 2.0-63.2%; AB median 4.7%, range 0.0-18.4% rest twitch; P = 0.007). No difference was found after correction for the SCI-related-superimposed twitch (median 6.7%, 0.0-17.5% rest twitch, P = 0.402). Thus during brief contractions, the maximal corticofugal output that participants with SCI could exert was similar to that of AB participants. During the sustained contraction, force decline (SCI, 58.0%, SD 15.1; AB, 57.2% SD 13.3) was similar (P = 0.887) because participants with SCI developed less peripheral (P = 0.048) but more central fatigue than AB participants. The largest change occurred at the start of the sustained contraction when the (corrected) superimposed twitches increased more in participants with SCI (SCI, 16.3% rest twitch, SD 20.8; AB, 2.7%, SD 4.7; P = 0.01). The greater reduction in muscle activation after SCI may relate to a reduced capacity to overcome fast fatigue-related excitability changes at the spinal level.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marwah Doestzada
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, Departments of Neurological Surgery, Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Marga Tepper
- Department of Rehabilitation Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge Zijdewind
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands;
| |
Collapse
|
16
|
Feyissa AM, Tummala S. Intraoperative neurophysiologic monitoring with Hoffmann reflex during thoracic spine surgery. J Clin Neurosci 2015; 22:990-4. [DOI: 10.1016/j.jocn.2015.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
|
17
|
Kim HE, Corcos DM, Hornby TG. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury. J Neurophysiol 2015; 114:427-39. [PMID: 25972590 DOI: 10.1152/jn.01074.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P < 0.001). H-reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive (P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission.
Collapse
Affiliation(s)
- Hyosub E Kim
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois; and
| | - T George Hornby
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Kim HE, Thompson CK, Hornby TG. Muscle activation varies with contraction mode in human spinal cord injury. Muscle Nerve 2014; 51:235-45. [PMID: 24825184 DOI: 10.1002/mus.24285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 11/06/2022]
Abstract
INTRODUCTION To better understand volitional force generation after chronic incomplete spinal cord injury (SCI), we examined muscle activation during single and repeated isometric, concentric, and eccentric knee extensor (KE) maximal voluntary contractions (MVCs). METHODS Torque and electromyographic (EMG) activity were recorded during single and repeated isometric and dynamic KE MVCs in 11 SCI subjects. Central activation ratios (CARs) were calculated for all contraction modes in SCI subjects and 11 healthy controls. RESULTS SCI subjects generated greater torque, KE EMG, and CARs during single eccentric vs. isometric and concentric MVCs (all P < 0.05). Torque and EMG remained similar during repeated eccentric MVCs; however, both increased during repeated isometric (>25%) and concentric (>30%) MVCs. CONCLUSIONS SCI subjects demonstrated greater muscle activation during eccentric MVCs vs. isometric and concentric MVCs. This pattern of activation contrasts with the decreased eccentric activation demonstrated by healthy controls. Such information may aid development of novel rehabilitation interventions.
Collapse
Affiliation(s)
- Hyosub E Kim
- Graduate Program in Neuroscience, University of Illinois at Chicago, 1919 West Taylor Street, M/C 898, Chicago, Illinois, 60612, USA
| | | | | |
Collapse
|
19
|
Chen CC, Chuang YF, Yang HC, Hsu MJ, Huang YZ, Chang YJ. Neuromuscular electrical stimulation of the median nerve facilitates low motor cortex excitability in patients with spinocerebellar ataxia. J Electromyogr Kinesiol 2014; 25:143-50. [PMID: 25434572 DOI: 10.1016/j.jelekin.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/26/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022] Open
Abstract
The neuromodulation of motor excitability has been shown to improve functional movement in people with central nervous system damage. This study aimed to investigate the mechanism of peripheral neuromuscular electrical stimulation (NMES) in motor excitability and its effects in people with spinocerebellar ataxia (SCA). This single-blind case-control study was conducted on young control (n=9), age-matched control (n=9), and SCA participants (n=9; 7 SCAIII and 2 sporadic). All participants received an accumulated 30 min of NMES (25 Hz, 800 ms on/800 ms off) of the median nerve. The central motor excitability, measured by motor evoked potential (MEP) and silent period, and the peripheral motor excitability, measured by the H-reflex and M-wave, were recorded in flexor carpi radialis (FCR) muscle before, during, and after the NMES was applied. The results showed that NMES significantly enhanced the MEP in all 3 groups. The silent period, H-reflex and maximum M-wave were not changed by NMES. We conclude that NMES enhances low motor excitability in patients with SCA and that the mechanism of the neuromodulation was supra-segmental. These findings are potentially relevant to the utilization of NMES for preparation of motor excitability. The protocol was registered at Clinicaltrials.gov (NCT02103075).
Collapse
Affiliation(s)
- Chih-Chung Chen
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine and Healthy Aging Research Center, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Fen Chuang
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine and Healthy Aging Research Center, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan 333, Taiwan
| | - Hsiao-Chu Yang
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine and Healthy Aging Research Center, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan 333, Taiwan
| | - Miao-Ju Hsu
- Department of Physical Therapy, College of Health Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan; Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Kaohsiung 807, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital 5, Fusing St., Kweishan, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan 333, Taiwan
| | - Ya-Ju Chang
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine and Healthy Aging Research Center, Chang Gung University, 259, Wen-Hwa 1st Rd, Kweishan, Taoyuan 333, Taiwan.
| |
Collapse
|
20
|
Elliott JM, Dewald JPA, Hornby TG, Walton DM, Parrish TB. Mechanisms underlying chronic whiplash: contributions from an incomplete spinal cord injury? PAIN MEDICINE 2014; 15:1938-44. [PMID: 25139822 DOI: 10.1111/pme.12518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the association between findings on advanced, but available, magnetic resonance imaging (MRI) sequences of the cervical spinal cord and muscular system, in tandem with biomechanical measures of maximum volitional plantar flexion torques as a proxy for a mild incomplete spinal cord injury. DESIGN Observational case series. SETTING University research laboratory. SUBJECTS Three patients with chronic whiplash and one patient with history of whiplash injury but no current symptoms. METHODS We measured lower extremity muscle fat, morphological changes in descending spinal cord pathways with advanced MRI applications and maximal activation of the plantar flexors. RESULTS Larger magnitudes of lower extremity muscle fat corresponded to altered spinal cord anatomy and reductions in the ability to maximally activate plantar flexor torques in the three subjects with chronic whiplash. Such findings were not present in the recovered participant. CONCLUSIONS The potential value of MRI to quantify neuromuscular degeneration in chronic whiplash is recognized. Larger scaled prospective studies are warranted before stronger conclusions can be drawn.
Collapse
Affiliation(s)
- James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | | | | | | | | |
Collapse
|
21
|
Papaiordanidou M, Varray A, Fattal C, Guiraud D. Neural and muscular mechanisms of electrically induced fatigue in patients with spinal cord injury. Spinal Cord 2014; 52:246-50. [DOI: 10.1038/sc.2013.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 11/09/2022]
|
22
|
Fatigue-induced motor cortex excitability changes in subjects with spinal cord injury. Brain Res Bull 2013; 99:9-12. [DOI: 10.1016/j.brainresbull.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
|