1
|
Soriano JE, Romac R, Squair JW, Barak OF, Sarafis ZK, Lee AH, Coombs GB, Vaseghi B, Grant C, Charbonneau R, Mijacika T, Krassioukov A, Ainslie PN, Larkin-Kaiser KA, Phillips A, Dujic Z. Passive leg cycling increases activity of the cardiorespiratory system in people with tetraplegia. Appl Physiol Nutr Metab 2021; 47:269-277. [PMID: 34739759 DOI: 10.1139/apnm-2021-0523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease, however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5±2 mmHg), mean arterial pressure (5±3 mmHg), stroke volume (2.4±0.8 mL), heart rate (2±1 beats/min) and cardiac output (0.3±0.07 L/min; all p<0.05). Minute ventilation (0.67±0.23 L/min), tidal volume (70±30 mL) and end-tidal PO2 (2.6±1.23 mmHg) also increased (all p<0.05). Endothelial function was improved immediately after exercise (1.62±0.13%, p<0.01). Passive cycling resulted in one incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system, improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: ● Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. ● Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.
Collapse
Affiliation(s)
- Jan Elaine Soriano
- University of Calgary, 2129, Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Rinaldo Romac
- Clinical Hospital Center Split, Department of Neurology, Split, Croatia;
| | - Jordan W Squair
- University of Calgary, 2129, Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Calgary, Alberta, Canada.,University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada;
| | - Otto F Barak
- University of Novi Sad, 84981, Faculty of Medicine, Novi Sad, Serbia;
| | - Zoe K Sarafis
- University of British Columbia, Faculty of Medicine , Vancouver, Canada.,ETH Zurich, 27219, Department of Health Sciences and Technology, Zurich, Switzerland;
| | - Amanda Hx Lee
- University of British Columbia, Faculty of Medicine , Vancouver, British Columbia, Canada.,University of British Columbia, Department of Experimental Medicine, Vancouver, British Columbia, Canada;
| | - Geoff B Coombs
- The University of British Columbia Okanagan, 97950, Centre for Heart, Lung, and Vascular Health, Kelowna, British Columbia, Canada;
| | - Bita Vaseghi
- University of Calgary, 2129, Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Calgary, Alberta, Canada.,University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada;
| | - Christopher Grant
- University of Calgary, 2129, Department of Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Rebecca Charbonneau
- University of Calgary, 2129, Department of Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Tanja Mijacika
- University of Split, 74422, Department of Integrative Physiology, Split, Croatia;
| | - Andrei Krassioukov
- University of British Columbia, Faculty of Medicine, Vancouver, British Columbia, Canada.,The University of British Columbia, 8166, Division of Physical Medicine & Rehabilitation, Vancouver, British Columbia, Canada.,G F Strong Rehabilitation Hospital, 103221, Vancouver, British Columbia, Canada;
| | - Philip N Ainslie
- University of British Columbia, Centre for Heart, Lung and Vascular Health, Kelowna, British Columbia, Canada;
| | - Kelly A Larkin-Kaiser
- University of Calgary, Departments of Physiology and Pharmacology, Cardiac Sciences, & Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Aaron Phillips
- University of Calgary, 2129, Departments of Physiology and Pharmacology, Cardiac Sciences & Clinical Neurosciences, Calgary, Canada, T2N 1N4;
| | - Zeljko Dujic
- University of Split School of Medicine, Department of Integrative Physiology, Split, Splitsko-dalmatinska, Croatia;
| |
Collapse
|
2
|
Peripheral Immune Dysfunction: A Problem of Central Importance after Spinal Cord Injury. BIOLOGY 2021; 10:biology10090928. [PMID: 34571804 PMCID: PMC8470244 DOI: 10.3390/biology10090928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Spinal cord injury can result in an increased vulnerability to infections, but until recently the biological mechanisms behind this observation were not well defined. Immunosuppression and concurrent sustained peripheral inflammation after spinal cord injury have been observed in preclinical and clinical studies, now termed spinal cord injury-induced immune depression syndrome. Recent research indicates a key instigator of this immune dysfunction is altered sympathetic input to lymphoid organs, such as the spleen, resulting in a wide array of secondary effects that can, in turn, exacerbate immune pathology. In this review, we discuss what we know about immune dysfunction after spinal cord injury, why it occurs, and how we might treat it. Abstract Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflammation and concurrent immune suppression have only recently begun to be explored mechanistically. Investigators have now identified numerous changes that occur in the peripheral immune system post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte function. These effects stem from maladaptive changes in the spinal cord after injury, including plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output in response to peripheral stimulation below injury level. Such pathological activity is particularly evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In this review, we summarize recent publications examining (1) how various immune functions and populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) potential interventions to improve SCI individuals’ immunological function to strengthen resistance to potentially deadly infections.
Collapse
|
3
|
Harman KA, DeVeau KM, Squair JW, West CR, Krassioukov AV, Magnuson DSK. Effects of early exercise training on the severity of autonomic dysreflexia following incomplete spinal cord injury in rodents. Physiol Rep 2021; 9:e14969. [PMID: 34337884 PMCID: PMC8327165 DOI: 10.14814/phy2.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Hemodynamic instability and cardiovascular (CV) dysfunction are hallmarks of patients living with cervical and high thoracic spinal cord injuries (SCI). Individuals experience bouts of autonomic dysreflexia (AD) and persistent hypotension which hamper the activities of daily living. Despite the widespread use of exercise training to improve health and CV function after SCI, little is known about how different training modalities impact hemodynamic stability and severity of AD in a model of incomplete SCI. In this study, we used implantable telemetry devices to assess animals with T2 contusions following 3.5 weeks of exercise training initiated 8 days post-injury: passive hindlimb cycling (T2-CYC, n = 5) or active forelimb swimming (T2-SW, n = 6). Uninjured and non-exercised SCI control groups were also included (CON, n = 6; T2-CON, n = 7; T10-CON, n = 6). Five weeks post-injury, both T2-CON and T2-CYC presented with resting hypotension compared to uninjured CON and T10-CON groups; no differences were noted in resting blood pressure in T2-SW versus CON and T10-CON. Furthermore, pressor responses to colorectal distention (AD) were larger in all T2-injured groups compared to T10-CON, and were not attenuated by either form of exercise training. Interestingly, when T2-injured animals were re-stratified based on terminal BBB scores (regardless of training group), animals with limited hindlimb recovery (T2-LOW, n = 7) had more severe AD responses. Our results suggest that the spontaneous recovery of locomotor and autonomic function after severe but incomplete T2 SCI also influences the severity of AD, and that short periods (3.5 weeks) of passive hindlimb cycling or active forelimb swimming are ineffective in this model.
Collapse
Affiliation(s)
- Kathryn A. Harman
- Department of Health & Sport SciencesUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Kathryn M. DeVeau
- Department of Anatomy and Cell BiologyGeorge Washington UniversityWashingtonD.C.USA
| | - Jordan W. Squair
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Christopher R. West
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Andrei V. Krassioukov
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- GF Strong Rehabilitation CentreVancouver Health AuthorityVancouverCanada
| | - David S. K. Magnuson
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
- Department of Neurological SurgeryUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
4
|
O'Reilly ML, Mironets E, Shapiro TM, Crowther K, Collyer E, Bethea JR, Tom VJ. Pharmacological Inhibition of Soluble Tumor Necrosis Factor-Alpha Two Weeks after High Thoracic Spinal Cord Injury Does Not Affect Sympathetic Hyperreflexia. J Neurotrauma 2021; 38:2186-2191. [PMID: 33397170 PMCID: PMC8309421 DOI: 10.1089/neu.2020.7504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After a severe, high-level spinal cord injury (SCI), plasticity to intraspinal circuits below injury results in heightened spinal sympathetic reflex activity and detrimentally impacts peripheral organ systems. Such sympathetic hyperreflexia is immediately apparent as an episode of autonomic dysreflexia (AD), a life-threatening condition characterized by sudden hypertension and reflexive bradycardia following below-level sensory inputs; for example, pressure sores or impacted fecal matter. Over time, plasticity within the spinal sympathetic reflex (SSR) circuit contributes to the progressive intensification of AD events, as the frequency and severity of AD events increase greatly beginning ∼2 weeks post-injury (wpi). The neuroimmune system has been implicated in driving sympathetic hyperreflexia, as inhibition of the cytokine soluble tumor necrosis factor-alpha (sTNFα) using the biological mimetic XPro1595 beginning within days post-SCI has been shown to attenuate the development of AD. Here, we sought to further understand the effective therapeutic time window of XPro1595 to diminish sympathetic hyperreflexia, as indicated by AD. We delayed the commencement of continuous intrathecal administration of XPro1595 until 2 weeks after a complete, thoracic level 3 injury in adult rats. We examined the severity of colorectal distension-induced AD biweekly. We found that initiation of sTNFα inhibition at 2 wpi does not attenuate the severity or intensification of sympathetic hyperreflexia compared with saline-treated controls. Coupled with previous data from our group, these findings suggest that central sTNFα signaling must be targeted prior to 2 weeks post-SCI in order to decrease sympathetic hyperreflexia.
Collapse
Affiliation(s)
- Micaela L. O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Eugene Mironets
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana M. Shapiro
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kallon Crowther
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Eileen Collyer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Veronica J. Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Tederko P, Ugniewski K, Bobecka-Wesołowska K, Tarnacka B. What do physiotherapists and physiotherapy students know about autonomic dysreflexia? J Spinal Cord Med 2021; 44:418-424. [PMID: 31403393 PMCID: PMC8081315 DOI: 10.1080/10790268.2019.1645966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
CONTEXT/OBJECTIVE Autonomic dysreflexia (AD) is an emergency condition typical for individuals with spinal cord injury (SCI). Adequate health professionals' knowledge of AD is important for the effective and safe rehabilitation of persons with SCI. The purpose of the study is to assess the knowledge of AD in undergraduate and postgraduate physiotherapists. The data gained will be useful for better addressing of AD in clinical practice. DESIGN An observational study. SETTING Rehabilitation College in Warsaw, Medical University of Warsaw, Poland. PARTICIPANTS 52 undergraduate and 68 postgraduate physiotherapists. INTERVENTION AD knowledge testing. OUTCOME MEASURES A test assessing knowledge of causality and consequences of AD created at the Medical University of Warsaw. RESULTS No significant differences in test scores between under- and postgraduates were found (P = 0.09). Higher scores were noted in physiotherapy masters as compared to bachelors (P = 0.01), in participants who have an in-patient practice (P = 0.04), a practice longer than 5 years (P = 0.02) and those who see patients with SCI more frequently (P = 0.01). A self-assessed knowledge of AD was admitted as poor or none by 96.2% of undergraduates and 86.8% of postgraduates. CONCLUSION In the studied population the knowledge of causality and consequences of AD presented by undergraduate and postgraduate physiotherapists was low. Lower test scores were associated with a lower level of professional education achieved, having an outpatient practice only and having fewer patients with spinal cord injury. Efforts should be made to improve undergraduate and postgraduate education on AD of physiotherapists.
Collapse
Affiliation(s)
- Piotr Tederko
- Department of Rehabilitation, First Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland,Correspondence to: Piotr Tederko, Department of Rehabilitation, Medical University of Warsaw, Spartańska1, 02-637Warszawa, Poland.
| | - Karol Ugniewski
- Department of Physiotherapy, Rehabilitation College in Warsaw, Warsaw, Poland
| | | | - Beata Tarnacka
- Department of Rehabilitation, First Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Liu S, Wang Y, Niebauer J. Effect of Exercise on Cardiovascular Function Following Spinal Cord Injury: A REVIEW. J Cardiopulm Rehabil Prev 2021; 41:13-18. [PMID: 32796491 DOI: 10.1097/hcr.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is associated with a reduced level of physical activity, deterioration of patient body composition, metabolic profile, quality of life, and psychological functioning. As a result, risk of cardiovascular disease (CVD) increases and CVD-related death occurs at an earlier age than in individuals without SCI. Regular participation in exercise has been shown to exert beneficial effects also in patients with SCI. In this review, we analyze and discuss the effects of regular exercise training in SCI on cardiovascular function, autonomic function of the cardiovascular system, arterial stiffness, metabolism, inflammation, and gene expression.
Collapse
Affiliation(s)
- Shujia Liu
- Departments of Spine and Spinal Cord Surgery (Dr Liu) and Clinical Laboratory (Dr Wang), Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China; Faculty of Rehabilitation Medicine, Capital Medical University, Beijing, China (Drs Liu and Wang); Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, and Institute of Sports Medicine, Prevention and Rehabilitation, University Hospital Salzburg, Salzburg, Austria (Dr Niebauer)
| | | | | |
Collapse
|
7
|
Sachdeva R, Krassioukov AV, Bucksot JE, Hays SA. Acute Cardiovascular Responses to Vagus Nerve Stimulation after Experimental Spinal Cord Injury. J Neurotrauma 2020; 37:1149-1155. [PMID: 31973660 DOI: 10.1089/neu.2019.6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to enhance plasticity and improve recovery in a range of neurological disorders. A recent study highlights the therapeutic promise of VNS in promoting motor recovery after spinal cord injury (SCI). We investigated the safety of acute VNS in a rat model of chronic SCI. We measured the cardiovascular response to various VNS paradigms following chronic high-thoracic SCI that is known to deleteriously impact cardiovascular control. Dose-response experiments with continuous VNS revealed an SCI-dependent increase in sensitivity for heart rate (HR) and blood pressure (BP) compared with controls. A clinically relevant intermittent VNS resulted in transient reduction in HR in rats with SCI; however, BP remained unaltered. In all experiments, the effect lasted only while the VNS stimulus train was present, as HR and BP restored to baseline values as soon as VNS ended. No prolonged episodes of persisting hypotension were seen in either group. Further, VNS did not trigger autonomic dysreflexia or exacerbate the severity of autonomic dysreflexia when induced during or after stimulation sessions. Overall, these findings provide initial evidence that intermittent VNS at parameters used for targeted plasticity therapy (30 Hz, 0.8 mA) appears safe and supports further investigation of this potential therapy for use following SCI.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jesse E Bucksot
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Hays
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
8
|
Attenuating Neurogenic Sympathetic Hyperreflexia Robustly Improves Antibacterial Immunity After Chronic Spinal Cord Injury. J Neurosci 2019; 40:478-492. [PMID: 31754014 DOI: 10.1523/jneurosci.2417-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) disrupts critical physiological systems, including the cardiovascular and immune system. Plasticity of spinal circuits below the injury results in abnormal, heightened sympathetic responses, such as extreme, sudden hypertension that hallmarks life-threatening autonomic dysreflexia. Moreover, such sympathetic hyperreflexia detrimentally impacts other effector organs, including the spleen, resulting in spinal cord injury-induced immunodeficiency. Consequently, infection is a leading cause of mortality after SCI. Unfortunately, there are no current treatments that prophylactically limit sympathetic hyperreflexia to prevent subsequent effector organ dysfunction. The cytokine soluble tumor necrosis factor α (sTNFα) is upregulated in the CNS within minutes after SCI and remains elevated. Here, we report that commencing intrathecal administration of XPro1595, an inhibitor of sTNFα, at a clinically feasible, postinjury time point (i.e., 3 d after complete SCI) sufficiently diminishes maladaptive plasticity within the spinal sympathetic reflex circuit. This results in less severe autonomic dysreflexia, a real-time gauge of sympathetic hyperreflexia, for months postinjury. Remarkably, delayed delivery of the sTNFα inhibitor prevents sympathetic hyperreflexia-associated splenic atrophy and loss of leukocytes to dramatically improve the endogenous ability of chronic SCI rats to fight off pneumonia, a common cause of hospitalization after injury. The improved immune function with XPro1595 correlates with less noradrenergic fiber sprouting and normalized norepinephrine levels in the spleen, indicating that heightened, central sTNFα signaling drives peripheral, norepinephrine-mediated organ dysfunction, a novel mechanism of action. Thus, our preclinical study supports intrathecally targeting sTNFα as a viable strategy to broadly attenuate sympathetic dysregulation, thereby improving cardiovascular regulation and immunity long after SCI.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) significantly disrupts immunity, thus increasing susceptibility to infection, a leading cause of morbidity in those living with SCI. Here, we report that commencing intrathecal administration of an inhibitor of the proinflammatory cytokine soluble tumor necrosis factor α days after an injury sufficiently diminishes autonomic dysreflexia, a real time gauge of sympathetic hyperreflexia, to prevent associated splenic atrophy. This dramatically improves the endogenous ability of chronically injured rats to fight off pneumonia, a common cause of hospitalization. This preclinical study could have a significant impact for broadly improving quality of life of SCI individuals.
Collapse
|
9
|
Harman KA, States G, Wade A, Stepp C, Wainwright G, DeVeau K, King N, Shum-Siu A, Magnuson DSK. Temporal analysis of cardiovascular control and function following incomplete T3 and T10 spinal cord injury in rodents. Physiol Rep 2019; 6:e13634. [PMID: 29595874 PMCID: PMC5875543 DOI: 10.14814/phy2.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that results in whole‐body dysfunction, notably cardiovascular (CV) disruption and disease. Injury‐induced destruction of autonomic pathways in conjunction with a progressive decline in physical fitness contribute to the poor CV status of SCI individuals. Despite the wide use of exercise training as a therapeutic option to reduce CV dysfunction, little is known about the acute hemodynamic responses to the exercise itself. We investigated CV responses to an exercise challenge (swimming) following both high and low thoracic contusion to determine if the CV system is able to respond appropriately to the challenge of swimming. Blood pressure (BP) telemetry and echocardiography were used to track the progression of dysfunction in rodents with T3 and T10 SCI (n = 8 each) for 10 weeks postcontusion. At 1 week postinjury, all animals displayed a drastic decline in heart rate (HR) during the exercise challenge, likely a consequence of neurogenic shock. Furthermore, over time, all groups developed a progressive inability to maintain BP within a narrow range during the exercise challenge despite displaying normal hemodynamic parameters at rest. Echocardiography of T10 animals revealed no persistent signs of cardiac dysfunction; T3 animals exhibited a transient decline in systolic function that returned to preinjury levels by 10 weeks postinjury. Novel evidence provided here illustrates that incomplete injuries produce hemodynamic instability that only becomes apparent during an exercise challenge. Further, this dysfunction lasts into the chronic phase of disease progression despite significant recovery of hindlimb locomotion and cardiac function.
Collapse
Affiliation(s)
- Kathryn A Harman
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gregory States
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Abigail Wade
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Chad Stepp
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Grace Wainwright
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Kathryn DeVeau
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Nicholas King
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| | - Alice Shum-Siu
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David S K Magnuson
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Biomedical Engineering, University of Louisville, Louisville, Kentucky
| |
Collapse
|
10
|
Krassioukov AV, Currie KD, Hubli M, Nightingale TE, Alrashidi AA, Ramer L, Eng JJ, Ginis KAM, MacDonald MJ, Hicks A, Ditor D, Oh P, Verrier MC, Craven BC. Effects of exercise interventions on cardiovascular health in individuals with chronic, motor complete spinal cord injury: protocol for a randomised controlled trial [Cardiovascular Health/Outcomes: Improvements Created by Exercise and education in SCI (CHOICES) Study]. BMJ Open 2019; 9:e023540. [PMID: 30612110 PMCID: PMC6326283 DOI: 10.1136/bmjopen-2018-023540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Recent studies demonstrate that cardiovascular diseases and associated complications are the leading cause of morbidity and mortality in individuals with spinal cord injury (SCI). Abnormal arterial stiffness, defined by a carotid-to-femoral pulse wave velocity (cfPWV) ≥10 m/s, is a recognised risk factor for heart disease in individuals with SCI. There is a paucity of studies assessing the efficacy of conventional training modalities on arterial stiffness and other cardiovascular outcomes in this population. Therefore, this study aims to compare the efficacy of arm cycle ergometry training (ACET) and body weight-supported treadmill training (BWSTT) on reducing arterial stiffness in individuals with chronic motor complete, high-level (above the sixth thoracic segment) SCI. METHODS AND ANALYSIS This is a multicentre, randomised, controlled, clinical trial. Eligible participants will be randomly assigned (1:1) into either ACET or BWSTT groups. Sixty participants with chronic (>1 year) SCI will be recruited from three sites in Canada (Vancouver, Toronto and Hamilton). Participants in each group will exercise three times per week up to 30 min and 60 min for ACET and BWSTT, respectively, over the period of 6 months. The primary outcome measure will be change in arterial stiffness (cfPWV) from baseline. Secondary outcome measures will include comprehensive assessments of: (1) cardiovascular parameters, (2) autonomic function, (3) body composition, (4) blood haematological and metabolic profiles, (5) cardiorespiratory fitness and (6) quality of life (QOL) and physical activity outcomes. Outcome measures will be assessed at baseline, 3 months, 6 months and 12 months (only QOL and physical activity outcomes). Statistical analyses will apply linear-mixed modelling to determine the training (time), group (ACET vs BWSTT) and interaction (time × group) effects on all outcomes. ETHICS AND DISSEMINATION Ethical approval was obtained from all three participating sites. Primary and secondary outcome data will be submitted for publication in peer-reviewed journals and widely disseminated. TRIAL REGISTRATION NUMBER NCT01718977; Pre-results. TRIAL STATUS Recruitment for this study began on January 2013 and the first participant was randomized on April 2013. Recruitment stopped on October 2018.
Collapse
Affiliation(s)
- Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Michèle Hubli
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Balgrist University Hospital, University of Zurich, Zurich, Swaziland
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah A Alrashidi
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Physical Therapy Department, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Leanne Ramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Janice J Eng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, British Columbia, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen A Martin Ginis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Southern Medical Program, School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Audrey Hicks
- Spinal Cord Injury Centre, McMaster University, Hamilton, Ontario, Canada
| | - Dave Ditor
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Paul Oh
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Molly C Verrier
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Beverly Catharine Craven
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Squair JW, Ruiz I, Phillips AA, Zheng MM, Sarafis ZK, Sachdeva R, Gopaul R, Liu J, Tetzlaff W, West CR, Krassioukov AV. Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury. J Neurotrauma 2018; 35:2861-2871. [DOI: 10.1089/neu.2018.5703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Ruiz
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron A. Phillips
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mei M.Z. Zheng
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoe K. Sarafis
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rayshad Gopaul
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Järve A, Todiras M, Lian X, Filippelli-Silva R, Qadri F, Martin RP, Gollasch M, Bader M. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice. Exp Neurol 2018; 311:173-181. [PMID: 30315807 DOI: 10.1016/j.expneurol.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Autonomic dysreflexia (AD), a syndrome caused by loss of supraspinal control over sympathetic activity and amplified vascular reflex upon sensory stimuli below injury level, is a major health problem in high-level spinal cord injury (SCI). After supraspinal sympathetic control of the vasculature below the lesion is lost, the renin-angiotensin system (RAS) is thought to be involved in AD by regulating blood pressure and vascular reactivity. In this study, we aimed to assess the role of different RAS receptors during AD following SCI. Therefore, we induced AD by colorectal distention (CRD) in wild-type mice and mice deficient in the RAS components angiotensin (Ang) II type 1a receptor (AT1a) (Agtr1a-/-) and Ang-(1-7) receptor Mas (Mas-/-) four weeks after complete transection of spinal cord at thoracic level 4 (T4). Systemic blood pressure measurements and wire myography technique were performed to assess hemodynamics and the reactivity of peripheral arteries, respectively. CRD increased mean arterial blood pressure (MAP) and decreased heart rate (HR) in all three animal groups. However, we found less increases in MAP in Mas-/- mice compared to control mice after CRD, whereas AT1a deficiency did not affect the hemodynamic response. We found that the reactivity of wild-type and Mas-/- mesenteric arteries, which are innervated from ganglia distal but close to thoracic level T4, was diminished in response to Ang II in AD after T4-SCI, but this difference was not observed in the absence of AT1a receptors. CRD did not influence the reactivity of femoral arteries which are innervated from ganglia more distal to thoracic level T4, in response to Ang II in AD. In conclusion, we identified a specific role of the Ang-(1-7) receptor Mas in regulating the systemic blood pressure increase in AD in T4-SCI mice. Furthermore, AT1a signaling is not involved in this hemodynamic response, but underlies increased vascular reactivity in mesenteric arteries in response to Ang II, where it may contribute to adaptive changes in regional blood flow.
Collapse
Affiliation(s)
- Anne Järve
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Xiaoming Lian
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Rafael Filippelli-Silva
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Renan P Martin
- Department of Biophysics, UNIFESP Universidade Federal de São Paulo, São Paulo, São Paulo 04039-032, Brazil; Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité Medical Faculty and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Nephrology/Intensive Care, Virchow Klinikum, Charité - University Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Soluble TNFα Signaling within the Spinal Cord Contributes to the Development of Autonomic Dysreflexia and Ensuing Vascular and Immune Dysfunction after Spinal Cord Injury. J Neurosci 2018; 38:4146-4162. [PMID: 29610439 DOI: 10.1523/jneurosci.2376-17.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease and susceptibility to infection are leading causes of morbidity and mortality for individuals with spinal cord injury (SCI). A major contributor to these is autonomic dysreflexia (AD), an amplified reaction of the autonomic nervous system (hallmarked by severe hypertension) in response to sensory stimuli below the injury. Maladaptive plasticity of the spinal sympathetic reflex circuit below the SCI results in AD intensification over time. Mechanisms underlying this maladaptive plasticity are poorly understood, restricting the identification of treatments. Thus, no preventative treatments are currently available. Neuroinflammation has been implicated in other pathologies associated with hyperexcitable neural circuits. Specifically, the soluble form of TNFα (sTNFα) is known to play a role in neuroplasticity. We hypothesize that persistent expression of sTNFα in spinal cord underlies AD exacerbation. To test this, we intrathecally administered XPro1595, a biologic that renders sTNFα nonfunctional, after complete, high-level SCI in female rats. This dramatically attenuated the intensification of colorectal distension-induced and naturally occurring AD events. This improvement is mediated via decreased sprouting of nociceptive primary afferents and activation of the spinal sympathetic reflex circuit. We also examined peripheral vascular function using ex vivo pressurized arterial preparations and immune function via flow cytometric analysis of splenocytes. Diminishing AD via pharmacological inhibition of sTNFα mitigated ensuing vascular hypersensitivity and immune dysfunction. This is the first demonstration that neuroinflammation-induced sTNFα is critical for altering the spinal sympathetic reflex circuit, elucidating a novel mechanism for AD. Importantly, we identify the first potential pharmacological, prophylactic treatment for this life-threatening syndrome.SIGNIFICANCE STATEMENT Autonomic dysreflexia (AD), a disorder that develops after spinal cord injury (SCI) and is hallmarked by sudden, extreme hypertension, contributes to cardiovascular disease and susceptibility to infection, respectively, two leading causes of mortality and morbidity in SCI patients. We demonstrate that neuroinflammation-induced expression of soluble TNFα plays a critical role in AD, elucidating a novel underlying mechanism. We found that intrathecal administration after SCI of a biologic that inhibits soluble TNFα signaling dramatically attenuates AD and significantly reduces AD-associated peripheral vascular and immune dysfunction. We identified mechanisms behind diminished plasticity of neuronal populations within the spinal sympathetic reflex circuit. This study is the first to pinpoint a potential pharmacological, prophylactic strategy to attenuate AD and ensuing cardiovascular and immune dysfunction.
Collapse
|
14
|
Phillips AA, Matin N, Jia M, Squair JW, Monga A, Zheng MMZ, Sachdeva R, Yung A, Hocaloski S, Elliott S, Kozlowski P, Dorrance AM, Laher I, Ainslie PN, Krassioukov AV. Transient Hypertension after Spinal Cord Injury Leads to Cerebrovascular Endothelial Dysfunction and Fibrosis. J Neurotrauma 2018; 35:573-581. [PMID: 29141501 DOI: 10.1089/neu.2017.5188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We aimed to create a clinically relevant pre-clinical model of transient hypertension, and then evaluate the pathophysiological cerebrovascular processes resulting from this novel stimulus, which has recently been epidemiologically linked to cerebrovascular disease. We first developed a clinically relevant model of transient hypertension, secondary to induced autonomic dysreflexia after spinal cord injury and demonstrated that in both patients and rats, this stimulus leads to drastic acute cerebral hyperperfusion. For this, iatrogenic urodynamic filling/penile vibrostimulation was completed while measuring beat-by-beat blood pressure and cerebral blood flow (CBF) in patients. We then developed a rodent model mimicking the clinical reality by performing colorectal distention (to induce autonomic dysreflexia) using pre-clinical beat-by-beat blood pressure and CBF assessments. We then performed colorectal distension in rats for four weeks (6x/day) to evaluate the long-term cerebrovascular consequences of transient hypertension. Outcome measures included middle cerebral artery endothelial function, remodeling, profibrosis and perivascular innervation; measured via pressure myography, immunohistochemistry, molecular biology, and magnetic resonance imaging. Our model demonstrates that chronic repetitive cerebral hyperperfusion secondary to transient hypertension because of autonomic dysreflexia: (1) impairs cerebrovascular endothelial function; (2) leads to profibrotic cerebrovascular stiffening characterized by reduced distensibility and increased collagen deposition; and (3) reduces perivascular sympathetic cerebrovascular innervation. These changes did not occur concurrent to hallmark cerebrovascular changes from chronic steady-state hypertension, such as hypertrophic inward remodeling, or reduced CBF. Chronic exposure to repetitive transient hypertension after spinal cord injury leads to diverse cerebrovascular impairment that appears to be unique pathophysiology compared with steady-state hypertension in non-spinal cord injured models.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Nusrat Matin
- 2 Michigan State University East Lansing , Michigan
| | - Mengyao Jia
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Aaron Monga
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Mei Mu Zi Zheng
- 3 Faculty of Graduate Studies, University of British Columbia , Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrew Yung
- 4 MRI Research Centre, Life Sciences Centre, University of British Columbia , Vancouver, British Columbia, Canada
| | - Shea Hocaloski
- 5 Sexual Health Rehabilitation Service; Vancouver Coastal Health Authority , Vancouver, British Columbia, Canada
| | - Stacy Elliott
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,6 Department of Psychiatry and Urologic Sciences, Vancouver Coastal Health Authority , Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | | | - Ismail Laher
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma 2017; 35:446-451. [PMID: 28967294 PMCID: PMC5793952 DOI: 10.1089/neu.2017.5082] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite autonomic dysfunction after spinal cord injury (SCI) being the major cause of death and a top health priority, the clinical management options for these conditions are limited to drugs with delayed onset and nonpharmacological interventions with equivocal effectiveness. We tested the capacity of electrical stimulation, applied transcutaneously over the spinal cord, to manage autonomic dysfunction in the form of orthostatic hypotension after SCI. We assessed beat-by-beat blood pressure (BP), stroke volume, and cardiac contractility (dP/dt; Finometer), as well as cerebral blood flow (transcranial Doppler) in 5 individuals with motor-complete SCI (4 cervical, 1 thoracic) during an orthostatic challenge with and without transcutaneous electrical stimulation applied at the TVII level. During the orthostatic challenge, all individuals experienced hypotension characterized by a 37 ± 4 mm Hg decrease in systolic BP, a 52 ± 10% reduction in cardiac contractility, and a 23 ± 6% reduction in cerebral blood flow (all p < 0.05), along with severe self-reported symptoms. Electrical stimulation completely normalized BP, cardiac contractility, cerebral blood flow, and abrogated all symptoms. Noninvasive transcutaneous electrical spinal cord stimulation may be a viable therapy for restoring autonomic cardiovascular control after SCI.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| | - Dimitry G Sayenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California
| | - V Reggie Edgerton
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,3 Neurobiology, University of California , Los Angeles, Los Angeles, California.,4 Department of Neurosurgery, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California.,5 Brain Research Institute, University of California , Los Angeles, Los Angeles, California
| | - Yury Gerasimenko
- 2 Department of Integrative Biology and Physiology, University of California , Los Angeles, Los Angeles, California.,6 Pavlov Institute of Physiology , Saint-Petersburg, Russia
| | - Andrei V Krassioukov
- 1 ICORD-BSCC, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Sarabadani Tafreshi A, Riener R, Klamroth-Marganska V. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients. Front Physiol 2017. [PMID: 28626427 PMCID: PMC5454056 DOI: 10.3389/fphys.2017.00327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants experience orthostatic hypotension. (d) The measurement day was not a statistically significant factor regarding the effects of verticalization and PE on the cardiovascular response. Conclusion: We provide evidence that PE can increase steady-state values of sBP and dBP in neurological patients during head-up tilt. Similar to healthy subjects the effect on sBP depends on the verticalization angle of the robot-assisted tilt table. PE might have the potential to prevent orthostatic hypotension, but as the amount of drop in BP in response to head-up tilting was not leading to orthostatic hypotension in our patients, we could neither conclude nor reject such a preventive compensatory effect. Furthermore, we found that changing the PE speed does not influence the steady-state cardiovascular response.
Collapse
Affiliation(s)
- Amirehsan Sarabadani Tafreshi
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH ZurichZurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of ZurichZurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH ZurichZurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of ZurichZurich, Switzerland
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH ZurichZurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of ZurichZurich, Switzerland
| |
Collapse
|
17
|
|
18
|
Abstract
Over the past 10 years, our team has attended numerous Paralympic games and International Paralympic Committee (IPC)-sanctioned events where we have accumulated the largest data set to date from elite athletes with spinal cord injury (SCI). This empirical evidence has allowed us to address critical questions related to health and athletic performance in these incredibly medically complex individuals. Namely, does autonomic function influence performance? Can we account for this with the present sport classification? How can we prevent the doping practice of self-inducing life-threatening episodes of hypertension to improve performance (termed "boosting")? How does extremely high participation in routine upper-body wheelchair exercise impact cardiovascular and cerebrovascular disease risk? Is it possible to improve the sport classification to level the playing field between athletes with and without autonomic dysfunction? Herein, we will narratively address these questions, and provide our perspective on future directions and recommendations moving forward. Our extensive clinical experience and comprehensive dataset suggest preserved autonomic function is critical for elite performance. We will explore how an easy-to-execute test may be able to predict which individuals are most likely to develop autonomic dysfunctions that may negatively affect their health and performance. We also will evaluate the possibility that a level playing field may be even more difficult to establish than once thought, considering the importance of not only voluntary movement to performance, but also autonomic function. Finally, we also will discuss new changes in screening guidelines at Rio to assess the occurrence of boosting, which is a banned practice by the IPC.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,2 MD/PhD Training Program, University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 1 International Collaboration on Repair Discoveries, University of British Columbia , Vancouver, British Columbia, Canada .,3 Department of Medicine, University of British Columbia , Vancouver, British Columbia, Canada .,4 GF Strong Rehabilitation Centre, Vancouver Health Authority, University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Squair JW, West CR, Popok D, Assinck P, Liu J, Tetzlaff W, Krassioukov AV. High Thoracic Contusion Model for the Investigation of Cardiovascular Function after Spinal Cord Injury. J Neurotrauma 2017; 34:671-684. [DOI: 10.1089/neu.2016.4518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jordan W. Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- MD/PhD Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Popok
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Peggy Assinck
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
- GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Popok DW, West CR, McCracken L, Krassioukov AV. Effects of early and delayed initiation of exercise training on cardiac and haemodynamic function after spinal cord injury. Exp Physiol 2017; 102:154-163. [DOI: 10.1113/ep085978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- David W. Popok
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver BC Canada
| | - Christopher R. West
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver BC Canada
- School of Kinesiology; Faculty of Education; University of British Columbia; Vancouver BC Canada
| | - Laura McCracken
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver BC Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD); University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; Division of Physical Medicine and Rehabilitation; University of British Columbia; Vancouver BC Canada
- GF Strong Rehabilitation Centre; Vancouver Coastal Health; Vancouver BC Canada
| |
Collapse
|
21
|
Nardone R, Orioli A, Golaszewski S, Brigo F, Sebastianelli L, Höller Y, Frey V, Trinka E. Passive cycling in neurorehabilitation after spinal cord injury: A review. J Spinal Cord Med 2017; 40:8-16. [PMID: 27841091 PMCID: PMC5376131 DOI: 10.1080/10790268.2016.1248524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
CONTEXT/OBJECTIVE Passive cycling (PC) may represent a potential alternative neurorehabilitation program for patients who are too weak or medically unstable to repeatedly practice active movements. We review here the most important animal and human studies addressing PC after spinal cord injury (SCI). METHODS A MEDLINE search was performed using following terms: "passive", "cycling", "pedaling", "pedalling","spinal cord injury". RESULTS Experimental studies revealed that PC modulated spinal reflex and reduced spasticity. PC also reduced autonomic dysreflexia and elicited cardio-protective effects. Increased levels of mRNA for brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-4 were found. In contrast, human studies failed to show an effect of PC on spasticity reduction and did not support its application for prevention of cardiovascular disease-related secondary complications. CONCLUSION Available evidence to support the use of PC as standard treatment in patients with SCI is still rather limited. Since it is conceivable that PC motion could elicit sensory inputs to activate cortical structures and induce cortical plasticity changes leading to improved lower limb motor performance, further carefully designed prospective studies in subjects with SCI are needed.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria,Department of Neurology, Franz Tappeiner Hospital, Merano, Italy,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria,Correspondence to: Raffaele Nardone, Department of Neurology – “F. Tappeiner” Hospital – Meran/o, Via Rossini, 5, 39012 Meran/o (BZ) – Italy. E-mail address:
| | - Andrea Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy,Department of Neurological and Movement Sciences. Section of Clinical Neurology, University of Verona, Italy
| | | | - Yvonne Höller
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Vanessa Frey
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
22
|
Davidson R, Phillips A. Cardiovascular Physiology and Responses to Sexual Activity in Individuals Living with Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2017; 23:11-19. [PMID: 29339873 PMCID: PMC5340505 DOI: 10.1310/sci2301-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Spinal cord injury (SCI) may profoundly impact autonomic function producing a variable degree of dysfunction in cardiovascular, bronchopulmonary, sweating, bladder, bowel, and sexual function. The cardiovascular system is crucially important for sexual function, as it is responsible for blood flow shifts to cavernous and musculoskeletal tissue during sexual activity. This system is prone to 3 main abnormalities after SCI including low resting blood pressure (LRBP), orthostatic hypotension (OH), and autonomic dysreflexia (AD), all of which have important effects on sexual function. Methods: We review the current etiological mechanisms and manifestations of cardiovascular dysfunction after SCI and discuss how this is documented to impact sexual function in individuals living with SCI. Conclusions: All individuals with SCI at or above the T6 neurologic level have an increased risk of AD during sexual stimulation, with increasing risk associated with higher levels of injury and greater completeness of injury. AD can be silent, and individuals living with SCI should be aware of blood pressure values at baseline and during sexual activity. Clinicians performing vibrostimulation fertility procedures need to be aware of the risk of AD and consider pretreatment if needed. Researchers studying the cardiovascular response to sexual stimulation should consider continuous monitoring of blood pressure, as intermittent monitoring may underestimate true blood pressure values.
Collapse
Affiliation(s)
- Ross Davidson
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| | - Aaron Phillips
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada
- Faculty of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, British Columbia, Canada
| |
Collapse
|
23
|
West CR, Squair JW, McCracken L, Currie KD, Somvanshi R, Yuen V, Phillips AA, Kumar U, McNeill JH, Krassioukov AV. Cardiac Consequences of Autonomic Dysreflexia in Spinal Cord Injury. Hypertension 2016; 68:1281-1289. [PMID: 27698067 DOI: 10.1161/hypertensionaha.116.07919] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Autonomic dysreflexia (AD), which describes episodic hypertension, is highly prevalent in people with spinal cord injury (SCI). In non-SCI, primary hypertension depresses cardiac contractile reserve via β-adrenergic mechanisms. In this study, we investigated whether AD contributes to the impairment in cardiac contractile function that accompanies SCI. We induced SCI in rodents and stratified them into sham, SCI, or SCI plus repetitive induction of AD. At 6-week post-SCI, we assessed cardiac function using in vivo (speckle-tracking echocardiography), ex vivo (working heart), and molecular approaches (Western blot). We also provide unique translational insight by comparing the relationship between the number of daily AD events and cardiac function in 14 individuals with cervical SCI. We found SCI and SCI plus repetitive induction of AD exhibited a reduction in left ventricular dimensions at 6-week post-SCI versus preinjury (P<0.049). Compared with sham, SCI exhibited a reduction in peak radial strain along with a down and rightward shift in the Starling curve (P<0.037), both of which were further depressed in SCI plus repetitive induction of AD (P<0.042). In response to β-adrenergic stimulation, SCI plus repetitive induction of AD exhibited an attenuated increase in contractile indices (P<0.001), despite no differences in β-receptor expression within the left ventricle. Our clinical data confirm our experimental findings by demonstrating significant associations between the number of daily AD events and markers of systolic and diastolic function along with left ventricular mechanics. Here, we provide the first evidence from a translational perspective that AD exerts insidious effects on cardiac function in rodents and humans with SCI.
Collapse
Affiliation(s)
- Christopher R West
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Jordan W Squair
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Laura McCracken
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Katharine D Currie
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Rishi Somvanshi
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Violet Yuen
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Aaron A Phillips
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Ujendra Kumar
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - John H McNeill
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K)
| | - Andrei V Krassioukov
- From the International Collaboration on Repair Discoveries (C.R.W., J.W.S., L.M., K.D.C., A.A.P., A.V.K), School of Kinesiology, Faculty of Education (C.R.W., L.M.), MD-PhD Training Program, Faculty of Medicine (J.W.S.), Faculty of Pharmaceutical Sciences (R.S., V.Y., U.K., J.H.M.), and Faculty of Medicine, Division of Physical Medicine and Rehabilitation (A.V.K), University of British Columbia, Vancouver, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, ON, Canada (K.D.C.); and GF Strong Rehabilitation Centre, Vancouver Coastal Health, BC, Canada (A.V.K).
| |
Collapse
|
24
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|