1
|
Leclerc C, Gervais C, Hjeij D, Briand MM, Williamson D, Bernard F, Duclos C, Arbour C. Sleep Disruptions in Hospitalized Adults Sustaining a Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2024; 39:E201-E215. [PMID: 37767918 DOI: 10.1097/htr.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Adults sustaining a traumatic brain injury (TBI) are at risk of sleep disturbances during their recovery, including when such an injury requires hospitalization. However, the sleep-wake profile, and internal and external factors that may interfere with sleep initiation/maintenance in hospitalized TBI patients are poorly understood. This review aimed to: (1) identify/summarize the existing evidence regarding sleep and sleep measurements in TBI adults receiving around-the-clock care in a hospital or during inpatient rehabilitation, and (2) identify internal/external factors linked to poor sleep in this context. METHODS A scoping review was conducted in accordance with the PRISMA Scoping Review Extension guidelines. A search was conducted in MEDLINE, PsycINFO, CINAHL, and Web of Science databases. RESULTS Thirty relevant studies were identified. The most common sleep variables that were put forth in the studies to characterize sleep during hospitalization were nighttime sleep time (mean = 6.5 hours; range: 5.2-8.9 hours), wake after sleep onset (87.1 minutes; range: 30.4-180 minutes), and sleep efficiency (mean = 72.9%; range: 33%-96%) using mainly actigraphy, polysomnography, and questionnaires (eg, the sleep-wake disturbance item of the Delirium Rating Scale or the Pittsburgh Sleep Quality Index). Twenty-four studies (80%) suggested that hospitalized TBI patients do not get sufficient nighttime sleep, based on the general recommendations for adults (7-9 hours per night). Sleep disruptions during hospitalization were found to be associated to several internal factors including TBI severity, cognitive status, and analgesia intake. External and modifiable factors, such as noise, light, and patient care, were consistently associated with sleep disruptions in this context. CONCLUSION Although the literature on sleep disturbances in hospitalized TBI patients has been increasing in recent years, many gaps in knowledge remain, including phenotypes and risk factors. Identifying these factors could help clinicians better understand the multiple sources of TBI patients' sleep difficulties and intervene accordingly.
Collapse
Affiliation(s)
- Catherine Leclerc
- Author Affiliations: Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada (Mss Leclerc and Hjeij, Mr Gervais, and Drs Williamson, Bernard, Duclos, and Arbour); Department of Psychology, Université de Montréal, Montréal, Québec, Canada (Ms Leclerc and Mr Gervais); Faculty of Medicine (Drs Briand and Bernard), Faculty of Pharmacy (Dr Williamson), and Faculty of Nursing (Dr Arbour), Université de Montréal, Montréal, Québec, Canada; Division of Trauma Research, Departments of Surgery and of Neurological Sciences, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Île-de-Montréal, Montréal, Québec, Canada (Drs Briand, Bernard, Duclos, and Arbour); and Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada (Dr Duclos)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Regniez M, Dufort-Gervais J, Provost C, Mongrain V, Martinez M. Characterization of Sleep, Emotional, and Cognitive Functions in a New Rat Model of Concomitant Spinal Cord and Traumatic Brain Injuries. J Neurotrauma 2024; 41:1044-1059. [PMID: 37885242 DOI: 10.1089/neu.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Traumatic injuries to the spinal cord or the brain have serious medical consequences and lead to long-term disability. The epidemiology, medical complications, and prognosis of isolated spinal cord injury (SCI) and traumatic brain injury (TBI) have been well described. However, there are limited data on patients suffering from concurrent SCI and TBI, even if a large proportion of SCI patients have concomitant TBI. The complications associated with this "dual-diagnosis" such as cognitive or behavioral dysfunction are well known in the rehabilitation setting, but evidence-based and standardized approaches for diagnosis and treatment are lacking. Our goal was to develop and characterize a pre-clinical animal model of concurrent SCI and TBI to help identifying "dual-diagnosis" tools. Female rats received a unilateral contusive SCI at the thoracic level alone (SCI group) or combined with a TBI centered on the contralateral sensorimotor cortex (SCI-TBI group). We first validated that the SCI extent was comparable between SCI-TBI and SCI groups, and that hindlimb function was impaired. We characterized various neurological outcomes, including locomotion, sleep architecture, brain activity during sleep, depressive- and anxiety-like behaviors, and working memory. We report that SCI-TBI and SCI groups show similar impairments in global locomotor function. While wake/sleep amount and distribution and anxiety- and depression-like symptoms were not affected in SCI-TBI and SCI groups in comparison to the control group (laminectomy and craniotomy only), working memory was impaired only in SCI-TBI rats. This pre-clinical model of concomitant SCI and TBI, including more severe variations of it, shows a translational value for the identification of biomarkers to refine the "dual-diagnosis" of neurotrauma in humans.
Collapse
Affiliation(s)
- Morgane Regniez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
| | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Research Center of the CHUM, Montréal, Québec, Canada
| | - Marina Martinez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Université de Montreal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montreal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Herrero Babiloni A, Baril AA, Charlebois-Plante C, Jodoin M, Sanchez E, De Baets L, Arbour C, Lavigne GJ, Gosselin N, De Beaumont L. The Putative Role of Neuroinflammation in the Interaction between Traumatic Brain Injuries, Sleep, Pain and Other Neuropsychiatric Outcomes: A State-of-the-Art Review. J Clin Med 2023; 12:jcm12051793. [PMID: 36902580 PMCID: PMC10002551 DOI: 10.3390/jcm12051793] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Sleep disturbances are widely prevalent following a traumatic brain injury (TBI) and have the potential to contribute to numerous post-traumatic physiological, psychological, and cognitive difficulties developing chronically, including chronic pain. An important pathophysiological mechanism involved in the recovery of TBI is neuroinflammation, which leads to many downstream consequences. While neuroinflammation is a process that can be both beneficial and detrimental to individuals' recovery after sustaining a TBI, recent evidence suggests that neuroinflammation may worsen outcomes in traumatically injured patients, as well as exacerbate the deleterious consequences of sleep disturbances. Additionally, a bidirectional relationship between neuroinflammation and sleep has been described, where neuroinflammation plays a role in sleep regulation and, in turn, poor sleep promotes neuroinflammation. Given the complexity of this interplay, this review aims to clarify the role of neuroinflammation in the relationship between sleep and TBI, with an emphasis on long-term outcomes such as pain, mood disorders, cognitive dysfunctions, and elevated risk of Alzheimer's disease and dementia. In addition, some management strategies and novel treatment targeting sleep and neuroinflammation will be discussed in order to establish an effective approach to mitigate long-term outcomes after TBI.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Correspondence:
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | - Marianne Jodoin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Erlan Sanchez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Liesbet De Baets
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Caroline Arbour
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gilles J. Lavigne
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Nadia Gosselin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
| | - Louis De Beaumont
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Surgery, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Fedele B, McKenzie D, Williams G, Giles R, Olver J. A comparison of agreement between actigraphy and polysomnography for assessing sleep during posttraumatic amnesia. J Clin Sleep Med 2022; 18:2605-2616. [PMID: 35912692 PMCID: PMC9622995 DOI: 10.5664/jcsm.10174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Sleep disturbance often emerges in the early recovery phase following a moderate to severe traumatic brain injury, known as posttraumatic amnesia. Actigraphy is commonly employed to assess sleep, as it is assumed that patients in posttraumatic amnesia (who display confusion, restlessness, and agitation) would better tolerate this measure over gold-standard polysomnography (PSG). This study evaluated the agreement between PSG and actigraphy for determining (sleep/wake time, sleep efficiency, sleep latency, and awakenings) in patients experiencing posttraumatic amnesia. It also compared the epoch-by-epoch sensitivity, specificity, and accuracy between the Actigraph device's 4 wake threshold settings (low, medium, high, and automatic) to PSG. METHODS The sample consisted of 24 inpatients recruited from a traumatic brain injury inpatient rehabilitation unit. Ambulatory PSG was recorded overnight at bedside and a Philips Actiwatch was secured to each patient's wrist for the same period. RESULTS There were poor correlations between PSG and actigraphy for all parameters (Lin's concordance correlation coefficient = < 0.80). The low threshold displayed the highest correlation with PSG for wake and sleep time, albeit still low. Actigraphy displayed low specificity (ranging from 17.1% to 36.6%). There appears to be a greater disparity between actigraphy and PSG for patients with increased wake time. CONCLUSIONS Actigraphy, while convenient, demonstrated poorer performance in determining sleep-wake parameters in patients with significantly disturbed sleep. Ambulatory PSG can provide a clearer understanding of the extent of sleep disturbances in these patients with reduced mobility during early rehabilitation. Study findings can help design future protocols of sleep assessment during posttraumatic amnesia and optimize treatment. CITATION Fedele B, McKenzie D, Williams G, Giles R, Olver J. A comparison of agreement between actigraphy and polysomnography for assessing sleep during posttraumatic amnesia. J Clin Sleep Med. 2022;18(11):2605-2616.
Collapse
Affiliation(s)
- Bianca Fedele
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Dean McKenzie
- Research Development and Governance Unit, Epworth HealthCare, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gavin Williams
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Robert Giles
- Sleep Unit, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
| | - John Olver
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Sanchez E, Blais H, Duclos C, Arbour C, Van Der Maren S, El-Khatib H, Baril AA, Bernard F, Carrier J, Gosselin N. Sleep from acute to chronic traumatic brain injury and cognitive outcomes. Sleep 2022; 45:zsac123. [PMID: 35640250 PMCID: PMC9366647 DOI: 10.1093/sleep/zsac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Indexed: 09/29/2023] Open
Abstract
STUDY OBJECTIVES Traumatic brain injuries (TBIs) cause persistent cerebral damage and cognitive deficits. Because sleep may be a critical factor for brain recovery, we characterized the sleep of patients with TBI from early hospitalization to years post-injury and explored the hypothesis that better sleep during hospitalization predicts more favorable long-term cognitive outcomes. METHODS We tested patients with moderate-to-severe TBI in the hospitalized (n = 11) and chronic (n = 43) stages using full-night polysomnography, with 82% of the hospitalized group being retested years post-injury. Hospitalized patients with severe orthopedic and/or spinal cord injury (n = 14) and healthy participants (n = 36) were tested as controls for the hospitalized and chronic TBI groups, respectively. Groups had similar age and sex and were compared for sleep characteristics, including slow waves and spindles. For patients with TBI, associations between sleep during hospitalization and long-term memory and executive function were assessed. RESULTS Hospitalized patients with TBI or orthopedic injuries had lower sleep efficiency, higher wake after sleep onset, and lower spindle density than the chronic TBI and healthy control groups, but only hospitalized patients with brain injury had an increased proportion of slow-wave sleep. During hospitalization for TBI, less fragmented sleep, more slow-wave sleep, and higher spindle density were associated to more favorable cognitive outcomes years post-injury, while injury severity markers were not associated with these outcomes. CONCLUSION These findings highlight the importance of sleep following TBI, as it could be a strong predictor of neurological recovery, either as a promoter or an early marker of cognitive outcomes.
Collapse
Affiliation(s)
- Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Caroline Arbour
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Francis Bernard
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Martin AM, Almeida EJ, Starosta AJ, Hammond FM, Hoffman JM, Schwartz DJ, Fann JR, Bell KR, Nakase-Richardson R. The Impact of Opioid Medications on Sleep Architecture and Nocturnal Respiration During Acute Recovery From Moderate to Severe Traumatic Brain Injury: A TBI Model Systems Study. J Head Trauma Rehabil 2021; 36:374-387. [PMID: 34489388 DOI: 10.1097/htr.0000000000000727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To describe patient and clinical characteristics associated with receipt of opioid medications and identify differences in sleep quality, architecture, and sleep-related respiration between those receiving and not receiving opioid medications. SETTING Acute inpatient rehabilitation care for moderate to severe traumatic brain injury (TBI). PARTICIPANTS A total of 248 consecutive admissions for inpatient rehabilitation care following moderate to severe TBI (average age of 43.6 years), who underwent level 1 polysomnography (PSG) (average time since injury: 120 days) across 6 sites. DESIGN Cross-sectional, secondary analyses. MAIN MEASURES The PSG sleep parameters included total sleep time (TST), sleep efficiency (SE), wake after sleep onset, rapid eye movement (REM) latency, sleep staging, and arousal and awakening indices. Respiratory measures included oxygen saturation, central apnea events per hour, obstructive apnea and hypopnea events per hour, and total apnea-hypopnea index. RESULTS After adjustment for number of prescribed medication classes, those receiving opioid medications on the day of PSG experienced increased TST relative to those not receiving opioid medications (estimated mean difference [EMD] = 31.58; 95% confidence interval [CI], 1.9-61.3). Other indices of sleep did not differ significantly between groups. Among respiratory measures those receiving opioids on the day of PSG experienced increased frequency of central sleep apnea events during total (EMD = 2.92; 95% CI, 0.8-5.0) and non-REM sleep (EMD = 3.37; 95% CI, 1.0-5.7) and higher frequency of obstructive sleep apnea events during REM sleep (EMD = 6.97; 95% CI, 0.1-13.8). Compared with those who did not, receiving opioids was associated with lower oxygen saturation nadir during total sleep (EMD = -3.03; 95% CI, -5.6 to -0.4) and a greater number of oxygen desaturations across REM (EMD = 8.15; 95% CI, 0.2-16.1), non-REM (EMD = 7.30; 95% CI, 0.3-14.4), and total sleep (EMD = 8.01; 95% CI, 0.8-15.2) Greater total apnea-hypopnea index was observed during REM (EMD = 8.13; 95% CI, 0.8-15.5) and total sleep (EMD = 7.26; 95% CI, 0.08-14.4) for those receiving opioids. CONCLUSION Opioid use following moderate to severe TBI is associated with an increase in indicators of sleep-related breathing disorders, a modifiable condition that is prevalent following TBI. As sleep-wake disorders are associated with poorer rehabilitation outcomes and opioid medications may frequently be administered following traumatic injury, additional longitudinal investigations are warranted in determining whether a causal relation between opioids and sleep-disordered breathing in those following moderate to severe TBI exists. Given current study limitations, future studies can improve upon methodology through the inclusion of indication for and dosage of opioid medications in this population when examining these associations.
Collapse
Affiliation(s)
- Aaron M Martin
- Mental Health & Behavioral Sciences Service (MHBSS), James A. Haley Veterans' Hospital, Tampa, Florida (Drs Martin and Richardson); Departments of Psychiatry and Behavioral Neurosciences (Dr Martin) and Internal Medicine, Division of Pulmonary and Sleep Medicine (Drs Richardson and Schwartz), University of South Florida, Tampa; Defense Health Agency Traumatic Brain Injury Center of Excellence at James A. Haley Veterans Hospital, Tampa, Florida (Dr Richardson); Research Department, Craig Hospital, Englewood, Colorado (Ms Almeida); Department of Rehabilitation Medicine, Division of Rehabilitation Psychology, University of Washington School of Medicine, Seattle (Drs Starosta and Hoffman); Department of Physical Medicine & Rehabilitation, Indiana University, Indianapolis (Dr Hammond); Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle (Dr Fann); and Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas (Dr Bell)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ludwig R, Nelson E, Vaduvathiriyan P, Rippee MA, Siengsukon C. Sleep quality in the chronic stage of concussion is associated with poorer recovery: A systematic review. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211020881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Recovery from a concussion varies based on a multitude of factors. One such factor is sleep disturbances. In our prior review, it was observed that in the acute phase, sleep disturbances are predictive of poor outcomes following a concussion. The literature gap remains on how sleep in the chronic phase of recovery affects outcomes. Objective To examine the association between sleep quality during the chronic stage of concussion and post-concussion outcomes. Literature Survey: Literature searches were performed during 1 July to 1 August 2019 in selected databases along with searching grey literature. Out of the 733 results, 702 references were reviewed after duplicate removal. Methods Three reviewers independently reviewed and consented on abstracts meeting eligibility criteria ( n = 35). The full-text articles were assessed independently by two reviewers. Consensus was achieved, leaving four articles. Relevant data from each study was extracted using a standard data-extraction table. Quality appraisal was conducted to assess potential bias and the quality of articles. Results One study included children (18–60 months) and three studies included adolescents and/or adults (ranging 12–35 years). The association between sleep and cognition (two studies), physical activity (one study), and emotion symptoms (one study) was examined. Sleep quality was associated with decreased cognition and emotional symptoms, but not with meeting physical activity guidelines six months post-concussion injury. Conclusions The heterogeneity in age of participants and outcomes across studies and limited number of included studies made interpretations difficult. Future studies may consider if addressing sleep quality following concussion will improve outcomes.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eryen Nelson
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Michael A Rippee
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Should We Lose Sleep Over Sleep Disturbances After Sports-Related Concussion? A Scoping Review of the Literature. J Head Trauma Rehabil 2021; 37:E206-E219. [PMID: 34145161 DOI: 10.1097/htr.0000000000000701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A single, severe traumatic brain injury can result in chronic sleep disturbances that can persist several years after the incident. In contrast, it is unclear whether there are sleep disturbances after a sports-related concussion (SRC). Considering growing evidence of links between sleep disturbance and neurodegeneration, this review examined the potential links between diagnosed SRCs and sleep disturbances to provide guidance for future studies. METHODS The scoping review undertook a systematic search of key online databases (Scopus, MEDLINE, SportDiscus, and Web of Science) using predetermined search terms for any articles that examined sleep after concussion. A screening criterion using agreed inclusion and exclusion criteria was utilized to ensure inclusion of relevant articles. DESIGN This scoping review is guided by the PRSIMA Scoping Review report. RESULTS Ten studies met the inclusion criteria, reporting on 896 adults who had experienced an SRC. Comparison with 1327 non-SRC adults occurred in 8 studies. Nine studies subjectively examined sleep, of which all but one study reported sleep disturbances after an SRC. Three studies objectively measured sleep, with 2 studies indicating large coefficients of variation of sleep duration, suggesting a range of sleep responses after an SRC. The only study to examine overnight polysomnography showed no differences in sleep metrics between those with and without an SRC. No studies examined interventions to improve sleep outcomes in people with concussion. CONCLUSIONS This scoping review indicates preliminary evidence of sleep disturbances following an SRC. The heterogeneity of methodology used in the included studies makes consensus on the results difficult. Given the mediating role of sleep in neurodegenerative disorders, further research is needed to identify physiological correlates and pathological mechanisms of sleep disturbances in SRC-related neurodegeneration and whether interventions for sleep problems improve recovery from concussion and reduce the risk of SRC-related neurodegeneration.
Collapse
|
9
|
Fedele B, McKenzie D, Williams G, Giles R, Olver J. Assessing Sleep Architecture With Polysomnography During Posttraumatic Amnesia After Traumatic Brain Injury: A Pilot Study. Neurorehabil Neural Repair 2021; 35:622-633. [PMID: 33978535 DOI: 10.1177/15459683211011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Early-onset sleep disturbance is common following moderate to severe traumatic brain injury (TBI) and often emerges while patients are in posttraumatic amnesia (PTA). However, sleep disruptions during this subacute recovery phase are not well-defined, and research often utilizes indirect measures (actigraphy) that quantify sleep based on activity. This study aims to examine sleep macro-architecture and sleep quality directly with ambulatory polysomnography (PSG) and measure endogenous salivary melatonin levels for patients experiencing PTA following moderate to severe TBI. METHOD Participants were recruited from an inpatient TBI rehabilitation unit. Nighttime PSG was administered at the patient's bedside. Two saliva specimens were collected for melatonin testing on a separate evening (24:00 and 06:00 hours) using melatonin hormone profile test kits. RESULTS Of 27 patients in whom PSG was recorded, the minimum required monitoring time occurred in n =17 (adherence: 63%) at a median of 37.0 days (quartile 1 [Q1] to quartile 3 [Q3]: 21.5-50.5) postinjury. Median non-rapid eye movement (NREM) and REM sleep proportions were similar to normal estimates. Slow-wave sleep was reduced and absent in 35.3% of patients. Sleep periods appeared fragmented, and median sleep efficiency was reduced (63.4%; Q1-Q3: 55.1-69.2). Median melatonin levels at both timepoints were outside the normal range of values specified for this test (from Australian Clinical Labs). CONCLUSION This study reports that ambulatory PSG and salivary melatonin assessment are feasible for patients experiencing PTA and offers new insight into the extent of sleep disturbance. Further research is necessary to understand associations between PTA and sleep disturbance.
Collapse
Affiliation(s)
- Bianca Fedele
- Epworth HealthCare, Melbourne, Victoria, Australia.,Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Victoria, Australia.,Monash University, Melbourne, Victoria, Australia
| | - Dean McKenzie
- Epworth HealthCare, Melbourne, Victoria, Australia.,Monash University, Melbourne, Victoria, Australia
| | - Gavin Williams
- Epworth HealthCare, Melbourne, Victoria, Australia.,Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Giles
- Epworth HealthCare, Melbourne, Victoria, Australia
| | - John Olver
- Epworth HealthCare, Melbourne, Victoria, Australia.,Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Victoria, Australia.,Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Toccalino D, Wiseman-Hakes C, Zalai DM. Preliminary Validation of the Sleep and Concussion Questionnaire as an Outcome Measure for Sleep Following Brain Injury. Brain Inj 2021; 35:743-750. [PMID: 33843391 DOI: 10.1080/02699052.2021.1906949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Sleep and wakefulness disturbances are common with traumatic brain injury (TBI); however, there are no condition-specific measures to evaluate sleep following TBI. OBJECTIVE To assess the convergent validity of the Sleep and Concussion Questionnaire (SCQ), a condition-specific (TBI) measure is compared to polysomnography and existing self-report sleep questionnaires. PARTICIPANTS INCLUDED Thirty-two adults diagnosed with mild TBI, 3-24 months post-injury, average age, 38.9 years, predominantly female (63%) and with symptoms of chronic insomnia. METHODS Participants underwent polysomnographic evaluation of sleep and completed the SCQ, Insomnia Severity Index (ISI), Epworth Sleepiness Scale (ESS), and the Fatigue Severity Scale (FSS). Correlations were assessed using Pearson's correlations. The sample was sufficiently powered (0.85) to detect a moderate to strong correlation of 0.5 or greater. RESULTS SCQ sub-questions were meaningfully correlated with corresponding objective sleep parameters (time awake, number of awakenings, sleep efficiency, sleep onset latency, wake after sleep onset) as measured with polysomnography. Additional significant correlations were seen between total scores on the SCQ and ISI and between SCQ sub questions and total ESS scores. CONCLUSIONS This work provides initial evidence of the convergent validity of the SCQ with objective sleep parameters and existing self-report measures in patients after mild TBI.
Collapse
Affiliation(s)
- Danielle Toccalino
- Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Catherine Wiseman-Hakes
- School of Rehabilitation Science, McMaster University, Hamilton, Canada.,University Health Network Toronto Rehabilitation Institute: KITE Research Institute, Toronto, Canada
| | - Dora M Zalai
- Oakville Centre for Cognitive Therapy, Oakville, Canada
| |
Collapse
|
11
|
Kjeldsen SS, Brodal L, Brunner I. Activity and rest in patients with severe acquired brain injury: an observational study. Disabil Rehabil 2020; 44:2744-2751. [PMID: 33161752 DOI: 10.1080/09638288.2020.1844317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine activity levels, types of activities and their distribution across the day in patients with severe acquired brain injury including disorders of consciousness admitted to subacute neurorehabilitation. METHODS In this observational cross-sectional study, a modified behavioural mapping tool was used to document activity of patients admitted to a specialized rehabilitation ward for three consecutive days from 8.00 am to 8.00 pm. Observers walked a fixed route and returned to each patient every 10 min. RESULTS Complete data was obtained in 1722/1728 observations on eight patients. Patients were registered as being in any activity in 55.6% and resting or sleeping in 30.3% of all observations. Patients were alone for 50.4% and were lying or sitting for 98.5% of the time. The major part (45%) of rehabilitation activities occurred during the morning before noon. The odds of being engaged in a rehabilitation activity were significantly different from afternoon and evening p = 0.02. Patients with higher function were more active. CONCLUSION Patients with severe ABI were involved in some kind of activity for more than half the day and resting approximately 1/3 of the day. Health personnel and visitors were present in most activities.Implications for rehabilitationRehabilitation of patients with severe acquired brain injury (ABI) comprises a high level of a broad range of activities and interactions.In order to truly offer round the clock rehabilitation, rehabilitation hospitals need to focus on delivering rehabilitation activities evenly across the waking hours.The long periods of daytime sleep and rest in patients with severe ABI should be further examined as there might be a potential to intensify rehabilitation.
Collapse
Affiliation(s)
- Simon S Kjeldsen
- Hammel Neurocenter and University Research Clinic, Aarhus University, Aarhus, Denmark
| | - Liv Brodal
- Department of Physiotherapy, Faculty of Health Science, VIA University College, Aarhus, Denmark
| | - Iris Brunner
- Hammel Neurocenter and University Research Clinic, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Physical Activity Intolerance and Cardiorespiratory Dysfunction in Patients with Moderate-to-Severe Traumatic Brain Injury. Sports Med 2020; 49:1183-1198. [PMID: 31098990 DOI: 10.1007/s40279-019-01122-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moderate-to-severe traumatic brain injury (TBI) is a chronic health condition with multi-systemic effects. Survivors face significant long-term functional limitations, including physical activity intolerance and disordered sleep. Persistent cardiorespiratory dysfunction is a potentially modifiable yet often overlooked major contributor to the alarmingly high long-term morbidity and mortality rates in these patients. This narrative review was developed through systematic and non-systematic searches for research relating cardiorespiratory function to moderate-to-severe TBI. The literature reveals patients who have survived moderate-to-severe TBI have ~ 25-35% reduction in maximal aerobic capacity 6-18 months post-injury, resting pulmonary capacity parameters that are reduced 25-40% for weeks to years post-injury, increased sedentary behavior, and elevated risk of cardiorespiratory-related morbidity and mortality. Synthesis of data from other patient populations reveals that cardiorespiratory dysfunction is likely a consequence of ventilator-induced diaphragmatic dysfunction (VIDD), which is not currently addressed in TBI management. Thus, cardiopulmonary exercise testing should be routinely performed in this patient population and those with cardiorespiratory deficits should be further evaluated for diaphragmatic dysfunction. Lack of targeted treatment for underlying cardiorespiratory dysfunction, including VIDD, likely contributes to physical activity intolerance and poor functional outcomes in these patients. Interventional studies have demonstrated that short-term exercise training programs are effective in patients with moderate-to-severe TBI, though improvement is variable. Inspiratory muscle training is beneficial in other patient populations with diaphragmatic dysfunction, and may be valuable for patients with TBI who have been mechanically ventilated. Thus, clinicians with expertise in cardiorespiratory fitness assessment and exercise training interventions should be included in patient management for individuals with moderate-to-severe TBI.
Collapse
|
13
|
Duclos C, Dumont M, Paquet J, Blais H, Van der Maren S, Menon DK, Bernard F, Gosselin N. Sleep-wake disturbances in hospitalized patients with traumatic brain injury: association with brain trauma but not with an abnormal melatonin circadian rhythm. Sleep 2020; 43:zsz191. [PMID: 31562742 PMCID: PMC6955643 DOI: 10.1093/sleep/zsz191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/08/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To test whether the sleep-wake cycle disruption in patients hospitalized with traumatic brain injury (TBI) (1) is also found in patients with traumatic injuries other than TBI (non-TBI) and (2) is associated with a weaker or abnormal circadian clock signal. METHODS Forty-two non-mechanically ventilated and non-sedated patients hospitalized for moderate-to-severe TBI were compared to 34 non-TBI patients. They wore wrist actigraphs for 9.4 ± 4.2 days, starting 19.3 ± 12.6 days post-injury. Of these, 17 TBI and 14 non-TBI patients had their urine collected every hour for 25 hours, starting 18.3 ± 12.3 days post-injury. We calculated urinary 6-sulfatoxymelatonin concentration to obtain total 24-hour excretion, excretion onset, offset, duration, amplitude, and acrophase. Using Student's t-tests, we compared groups on actigraphy (daytime activity ratio, nighttime total sleep time, and fragmentation index) and melatonin variables. We investigated associations between melatonin and actigraphy variables using Pearson's correlations. RESULTS TBI patients had poorer daytime activity ratio (TBI: 77.5 ± 9.4%; non-TBI: 84.6 ± 6.9%), shorter nighttime total sleep time (TBI: 353.5 ± 96.6 min; non-TBI: 421.2 ± 72.2 min), and higher fragmentation index (TBI: 72.2 ± 30.0; non-TBI: 53.5 ± 23.6) (all p-values < 0.01). A melatonin rhythm was present in both groups, and no group differences were found on melatonin variables. No associations were found between melatonin and actigraphy variables in TBI patients. CONCLUSION Moderate-to-severe TBI patients have more serious sleep-wake disturbances than non-TBI patients hospitalized in the same environment, suggesting that the brain injury itself alters the sleep-wake cycle. Despite their deregulated 24-hour sleep-wake cycle, TBI patients have a normal circadian clock signal.
Collapse
Affiliation(s)
- Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
- Department of Psychiatry, Université de Montréal, Montréal, Canada
| | - Marie Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
- Department of Psychiatry, Université de Montréal, Montréal, Canada
| | - Jean Paquet
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
| | - Solenne Van der Maren
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
- Department of Psychology, Université de Montréal, Montréal, Canada
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francis Bernard
- Department of Intensive Care, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l’Île-de-Montréal, Montréal, Canada
- Department of Psychology, Université de Montréal, Montréal, Canada
| |
Collapse
|
14
|
Bigué JL, Duclos C, Dumont M, Paquet J, Blais H, Menon DK, Bernard F, Gosselin N. Validity of actigraphy for nighttime sleep monitoring in hospitalized patients with traumatic injuries. J Clin Sleep Med 2020; 16:185-192. [PMID: 31992412 DOI: 10.5664/jcsm.8162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Sleep-wake disturbances are frequent among patients hospitalized for traumatic injuries but remain poorly documented because of the lack of tools validated for hospitalized patients. This study aimed to validate actigraphy for nighttime sleep monitoring of hospitalized patients with severe traumatic injuries, using ambulatory polysomnography (PSG). METHODS We tested 17 patients (30.4 ± 14.7 years, 16.6 ± 8.2 days postinjury) who had severe orthopedic injuries and/or spinal cord injury, with or without traumatic brain injury. When medically stable, patients wore an actigraph on a nonparalyzed arm and underwent ambulatory PSG at the bedside. Data were converted to 1-minute epochs. The following parameters were calculated for the nighttime period: total sleep time, total wake time, sleep efficiency, and number of awakenings. Epoch-by-epoch concordance between actigraphy and PSG was analyzed to derive sensitivity, specificity, and accuracy. PSG sleep parameters were compared to those obtained from four actigraphy scoring algorithms by Bland-Altman plots. RESULTS Sensitivity to detect sleep was ≥ 92% and accuracy was > 85% for all four actigraphy algorithms used, whereas specificity varied from 48% to 60%. The low-activity wake threshold (20 activity counts per epoch) was most closely associated with PSG on all sleep parameters. This scoring algorithm also had the highest specificity (59.9%) and strong sensitivity (92.8%). CONCLUSIONS Actigraphy is valid for monitoring nighttime sleep and wakefulness in patients hospitalized with traumatic injuries, with sensitivity, specificity and accuracy comparable to actigraphic recordings in healthy individuals. A scoring algorithm using a low wake threshold is best suited for this population and setting.
Collapse
Affiliation(s)
- Julien Lauzier Bigué
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Medicine, Université de Montréal, Montreal, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Marie Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychiatry, Université de Montréal, Montreal, Canada
| | - Jean Paquet
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - David K Menon
- Division of Anaesthesia, Cambridge University, Cambridge, United Kingdom
| | - Francis Bernard
- Department of Medicine, Université de Montréal, Montreal, Canada.,Critical Care, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada.,Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
15
|
Fedele B, Williams G, McKenzie D, Sutherland E, Olver J. Subacute sleep disturbance in moderate to severe traumatic brain injury: a systematic review. Brain Inj 2019; 34:316-327. [PMID: 31774695 DOI: 10.1080/02699052.2019.1695288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: This systematic review evaluated subacute sleep disturbance following moderate to severe traumatic brain injury (TBI) and the impact of secondary factors such as mood or pain.Methods: A comprehensive search strategy was applied to nine databases. Inclusion criteria included: adults ≥18 years, moderate and severe TBI and within 3 months of injury. Eligible studies were critically appraised using the McMaster Quantitative Critical Review Form. Study characteristics, outcomes, and methodological quality were synthesized. This systematic review was registered with PROSPERO (Registration number: CRD42018087799).Results: Ten studies were included. Research identified early-onset sleep disturbances; characterized as fragmented sleep periods and difficulty initiating sleep. Alterations to sleep architecture (e.g. rapid eye movement sleep) were reported. Sleep disturbance appears to associate with alterations of consciousness. Sleep disturbance tended to be particularly increased during the phase of post-traumatic amnesia (PTA) (78.7%).Conclusions: There is a limited amount of research available, which has inherent measurement and sample size limitations. The gold standard for measuring sleep (polysomnography) was rarely utilized, which may affect the detection of sleep disturbance and sleep architecture. Secondary factors potentially influencing sleep were generally not reported. Further evaluation on associations between sleep and PTA is needed.
Collapse
Affiliation(s)
- Bianca Fedele
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia.,Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Gavin Williams
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Dean McKenzie
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Research Development and Governance Unit, Epworth HealthCare, Melbourne, Australia
| | - Edwina Sutherland
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia
| | - John Olver
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia.,Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Injury, Sleep, and Functional Outcome in Hospital Patients With Traumatic Brain Injury. J Neurosci Nurs 2019; 51:134-141. [PMID: 30964844 DOI: 10.1097/jnn.0000000000000441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PROBLEM Uninterrupted nighttime sleep is associated with better cognition and functional outcomes in healthy adults, but the relationship between sleep and functional outcome in individuals hospitalized with severe traumatic brain injury (TBI) remains to be clarified. OBJECTIVE The aims of this study were to (1) describe nighttime rest-activity variables-wake bouts (counts), total wake time (minutes), and sleep efficiency (SE) (percentage; time asleep/time in bed)-in people on a neuroscience step-down unit (NSDU) post-TBI and (2) describe the association between injury and nighttime rest-activity on post-TBI functional outcome (using Functional Independence Measure [FIM] at discharge from inpatient care). METHODS This study is a cross-sectional, descriptive pilot study. We recruited participants from the NSDU (n = 17 [age: mean (SD), 63.4 (17.9)]; 82% male, 94% white) who wore wrist actigraphy (source of nighttime rest-activity variables) for up to 5 nights. For injury variables, we used Glasgow Coma Scale (GCS) score and Injury Severity Score (ISS). We used Spearman ρ and regression to measure associations. RESULTS Glasgow Coma Scale mean (SD) score was 8.8 (4.9), ISS mean (SD) score was 23.6 (6.7), and FIM mean (SD) score was 48 (14.5). Averages of nighttime rest-activity variables (8 PM-7 AM) were as follows: SE, 73% (SD, 16); wake bouts, 41 counts (SD, 18); total wake time, 74 minutes (SD, 47). Correlations showed significance between FIM and GCS (P = .005) and between SE and GCS (P = .015). GCS was the only statistically significant variable associated with FIM (P = .013); we eliminated other variables from the model as nonsignificant (P > .10). Sleep efficiency and FIM association was nonsignificant (P = .40). In a separate model (ISS, GCS, and SE [dependent variable]), GCS was significant (P = .04), but ISS was not (P = .25). CONCLUSION Patients with severe TBI on the NSDU have poor actigraphic sleep at night. GCS has a stronger association to functional outcome than nighttime rest-activity variables.
Collapse
|
17
|
Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 36:802-814. [PMID: 30136622 PMCID: PMC6387567 DOI: 10.1089/neu.2018.5810] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- Hannah E. Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Maneyapanda MB, Stork R, Ingraham B, Lonini L, Jayaraman A, Shawen N, Ripley D. Association of sleep with neurobehavioral impairments during inpatient rehabilitation after traumatic brain injury. NeuroRehabilitation 2018; 43:319-325. [DOI: 10.3233/nre-182533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mithra B. Maneyapanda
- Brain Injury Program, Bryn Mawr Rehab Hospital, Malvern, PA, USA
- Department Rehabilitation Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan Stork
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Ingraham
- Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine/Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Luca Lonini
- Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine/Shirley Ryan AbilityLab, Chicago, IL, USA
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Arun Jayaraman
- Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine/Shirley Ryan AbilityLab, Chicago, IL, USA
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Nicholas Shawen
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - David Ripley
- Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine/Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
19
|
Raikes AC, Bajaj S, Dailey NS, Smith RS, Alkozei A, Satterfield BC, Killgore WDS. Diffusion Tensor Imaging (DTI) Correlates of Self-Reported Sleep Quality and Depression Following Mild Traumatic Brain Injury. Front Neurol 2018; 9:468. [PMID: 29973910 PMCID: PMC6019466 DOI: 10.3389/fneur.2018.00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are a significant social, sport, and military health issue. In spite of advances in the clinical management of these injuries, the underlying pathophysiology is not well-understood. There is a critical need to advance objective biomarkers, allowing the identification and tracking of the long-term evolution of changes resulting from mTBI. Diffusion-weighted imaging (DWI) allows for the assessment of white-matter properties in the brain and shows promise as a suitable biomarker of mTBI pathophysiology. Methods: 34 individuals within a year of an mTBI (age: 24.4 ± 7.4) and 18 individuals with no history of mTBI (age: 23.2 ± 3.4) participated in this study. Participants completed self-report measures related to functional outcomes, psychological health, post-injury symptoms, and sleep, and underwent a neuroimaging session that included DWI. Whole-brain white matter was skeletonized using tract-based spatial statistics (TBSS) and compared between groups as well as correlated within-group with the self-report measures. Results: There were no statistically significant anatomical differences between the two groups. After controlling for time since injury, fractional anisotropy (FA) demonstrated a negative correlation with sleep quality scores (higher FA was associated with better sleep quality) and increasing depressive symptoms in the mTBI participants. Conversely, mean (MD) and radial diffusivity (RD) demonstrated positive correlations with sleep quality scores (higher RD was associated with worse sleep quality) and increasing depressive symptoms. These correlations were observed bilaterally in the internal capsule (anterior and posterior limbs), corona radiata (anterior and superior), fornix, and superior fronto-occipital fasciculi. Conclusion: The results of this study indicate that the clinical presentation of mTBI, particularly with respect to depression and sleep, is associated with reduced white-matter integrity in multiple areas of the brain, even after controlling for time since injury. These areas are generally associated not only with sleep and emotion regulation but also cognition. Consequently, the onset of depression and sleep dysfunction as well as cognitive impairments following mTBI may be closely related to each other and to white-matter integrity throughout the brain.
Collapse
Affiliation(s)
- Adam C Raikes
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sahil Bajaj
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ryan S Smith
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Brieann C Satterfield
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
21
|
Early Presence of Sleep Spindles on Electroencephalography Is Associated With Good Outcome After Pediatric Cardiac Arrest. Pediatr Crit Care Med 2017; 18:452-460. [PMID: 28328788 DOI: 10.1097/pcc.0000000000001137] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The role of sleep architecture as a biomarker for prognostication after resuscitation from cardiac arrest in children hospitalized in an ICU remains poorly defined. We sought to investigate the association between features of normal sleep architecture in children after cardiac arrest and a favorable neurologic outcome at 6 months. DESIGN Retrospective review of medical records and continuous electroencephalography monitoring. SETTING Cardiac and PICU of a tertiary children's hospital. PATIENTS All patients from 6 months to 18 years old resuscitated from cardiac arrest who underwent continuous electroencephalography monitoring in the first 24 hours after in- or out-of-hospital cardiac arrest from January 2010 to June 2015. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Thirty-four patients underwent continuous electroencephalography monitoring after cardiac arrest. The median age was 6.1 years (interquartile range, 1.5-12.5 yr), 20 patients were male (59%). Most cases (n = 23, 68%) suffered from in-hospital cardiac arrest. Electroencephalography monitoring was initiated a median of 9.3 hours (5.8-14.9 hr) after return of spontaneous circulation, for a median duration of 14.3 hours (6.0-16.0 hr) within the first 24-hour period after the cardiac arrest. Five patients had normal spindles, five had abnormal spindles, and 24 patients did not have any sleep architecture. The presence of spindles was associated with a favorable neurologic outcome at 6-month postcardiac arrest (p = 0.001). CONCLUSIONS Continuous electroencephalography monitoring can be used in children to assess spindles in the ICU. The presence of spindles on continuous electroencephalography monitoring in the first 24 hours after resuscitation from cardiac arrest is associated with a favorable neurologic outcome. Assessment of sleep architecture on continuous electroencephalography after cardiac arrest could improve outcome prediction.
Collapse
|
22
|
West A, Jennum P, Simonsen SA, Sander B, Pavlova M, Iversen HK. Impact of naturalistic lighting on hospitalized stroke patients in a rehabilitation unit: Design and measurement. Chronobiol Int 2017; 34:687-697. [PMID: 28430522 DOI: 10.1080/07420528.2017.1314300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION AND RATIONALE Stroke is a major cause of acquired cerebral disability among adults, frequently accompanied by depression, anxiety, cognitive impairment, disrupted sleep and fatigue. New ways of intervention to prevent these complications are therefore needed. The major circadian regulator, the suprachiasmatic nucleus, is mainly controlled by natural daylight, and the blue spectrum is considered the most powerful. During stroke rehabilitation, patients typically are mostly indoors and therefore not exposed to the natural daytime variation in light intensity. Furthermore, several rehabilitation hospitals may be exposed to powerful light in the blue spectrum, but at a time that is adversely related to their endogenous circadian phase, for example in the late evening instead of the daytime. HYPOTHESIS Naturalistic light that mimics the natural daytime spectrum variation will have a positive impact on the health of poststroke patients admitted to rehabilitation. We test specifically for improved sleep and less fatigue (questionnaires, polysomnography, Actiwatch), improved well-being (questionnaires), lessen anxiety and depression (questionnaires), improved cognition (tests), stabilizing of the autonomous nervous system (ECG/HR, blood pressure, temperature) and stabilizing of the diurnal biochemistry (blood markers). STUDY DESIGN The study is a prospective parallel longitudinal randomized controlled study (quasi randomization). Stroke patients in need of rehabilitation will be included at the acute stroke unit and randomized to either the intervention unit (naturalistic lighting) or the control unit (CU) (standard lighting). The naturalistic light is installed in the entire IU (Cromaviso, Denmark). CONCLUSION This study aims to elucidate the influence of naturalistic light on patients during long-term hospitalization in a real hospital setting. The hypotheses are based on preclinical research, as studies using naturalistic light have never been performed before. Investigating the effects of naturalistic light in a clinical setting is therefore much needed.
Collapse
Affiliation(s)
- Anders West
- a Clinical Stroke Research Unit, Department of Neurology, Faculty of Health Sciences , University of Copenhagen , Rigshospitalet , Glostrup , Denmark
| | - Poul Jennum
- b Danish Center for Sleep Medicine, Department of Neurophysiology Faculty of Health Sciences , University of Copenhagen , Rigshospitalet , Glostrup , Denmark
| | - Sofie Amalie Simonsen
- a Clinical Stroke Research Unit, Department of Neurology, Faculty of Health Sciences , University of Copenhagen , Rigshospitalet , Glostrup , Denmark
| | - Birgit Sander
- c Department of Ophthalmology , Copenhagen University Hospital , Rigshospitalet , Glostrup , Denmark
| | - Milena Pavlova
- d Division of Epilepsy, Neurophysiology, and Sleep, Department of Neurology , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Helle K Iversen
- a Clinical Stroke Research Unit, Department of Neurology, Faculty of Health Sciences , University of Copenhagen , Rigshospitalet , Glostrup , Denmark
| |
Collapse
|