1
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
2
|
Mongiardini E, Colamarino E, Toppi J, de Seta V, Pichiorri F, Mattia D, Cincotti F. Low Frequency Brain Oscillations during the execution and imagination of simple hand movements for Brain-Computer Interface applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:226-229. [PMID: 36086248 DOI: 10.1109/embc48229.2022.9871772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low Frequency Brain Oscillations (LFOs) are brief periods of oscillatory activity in delta and lower theta band that appear at motor cortical areas before and around movement onset. It has been shown that LFO power decreases in post-stroke patients and re-emerges with motor functional recovery. To date, LFOs have not yet been explored during the motor execution (ME) and imagination (MI) of simple hand movements, often used in BCI-supported motor rehabilitation protocols post-stroke. This study aims at analyzing the LFOs during the ME and MI of the finger extension task in a sample of 10 healthy subjects and 2 stroke patients in subacute phase. The results showed that LFO power peaks occur in the preparatory phase of both ME and MI tasks on the sensorimotor channels in healthy subjects and their alterations in stroke patients. Clinical Relevance- Results suggest that LFOs could be explored as biomarker of the motor function recovery in rehabilitative protocols based on the movement imagination.
Collapse
|
3
|
EEG Oscillations in Specific Frequency Bands Are Differently Coupled with Angular Joint Angle Kinematics during Rhythmic Passive Elbow Movement. Brain Sci 2022; 12:brainsci12050647. [PMID: 35625033 PMCID: PMC9139522 DOI: 10.3390/brainsci12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Rhythmic passive movements are often used during rehabilitation to improve physical functions. Previous studies have explored oscillatory activities in the sensorimotor cortex during active movements; however, the relationship between movement rhythms and oscillatory activities during passive movements has not been substantially tested. Therefore, we aimed to quantitatively identify changes in cortical oscillations during rhythmic passive movements. Twenty healthy young adults participated in our study. We placed electroencephalography electrodes over a nine-position grid; the center was oriented on the transcranial magnetic stimulation hotspot of the biceps brachii muscle. Passive movements included elbow flexion and extension; the participants were instructed to perform rhythmic elbow flexion and extension in response to the blinking of 0.67 Hz light-emitting diode lamps. The coherence between high-beta and low-gamma oscillations near the hotspot of the biceps brachii muscle and passive movement rhythms was higher than that between alpha oscillation and passive movement rhythm. These results imply that alpha, beta, and gamma oscillations of the primary motor cortex are differently related to passive movement rhythm.
Collapse
|
4
|
Effect of long-term paired associative stimulation on the modulation of cortical sensorimotor oscillations after spinal cord injury. Spinal Cord Ser Cases 2022; 8:38. [PMID: 35379772 PMCID: PMC8980100 DOI: 10.1038/s41394-022-00506-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Study design A prospective interventional case series. Objectives To explore changes in the modulation of cortical sensorimotor oscillations after long-term paired associative stimulation (PAS) in participants with spinal cord injury (SCI). Setting BioMag Laboratory, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Methods Five patients with chronic incomplete SCI received unilateral spinal PAS to upper limb for 16–22 days. Changes in the modulation of sensorimotor oscillations in response to tactile stimulus and active and imaginary hand movements were assessed with magnetoencephalography recorded before and after the intervention. Results PAS restored the modulation of sensorimotor oscillations in response to active hand movement in four patients, whereas the modulation following tactile stimulation remained unaltered. The observed change was larger in the hemisphere that received PAS and preceded the clinical effect of the intervention. Conclusions Long-term spinal PAS treatment, which enhances the motor functions of SCI patients, also restores the modulation of cortical sensorimotor oscillations.
Collapse
|
5
|
Kulasingham JP, Brodbeck C, Khan S, Marsh EB, Simon JZ. Bilaterally Reduced Rolandic Beta Band Activity in Minor Stroke Patients. Front Neurol 2022; 13:819603. [PMID: 35418932 PMCID: PMC8996122 DOI: 10.3389/fneur.2022.819603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke patients with hemiparesis display decreased beta band (13-25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
Collapse
Affiliation(s)
- Joshua P. Kulasingham
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
| | - Christian Brodbeck
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Sheena Khan
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elisabeth B. Marsh
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
- Department of Biology, University of Maryland, College Park, MD, United States
- Institute for Systems Research, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
Illman MJ, Laaksonen K, Jousmäki V, Forss N, Piitulainen H. Reproducibility of Rolandic beta rhythm modulation in MEG and EEG. J Neurophysiol 2022; 127:559-570. [PMID: 35044809 PMCID: PMC8858683 DOI: 10.1152/jn.00267.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13–25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70–0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments. NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.
Collapse
Affiliation(s)
- Mia Johanna Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland
| |
Collapse
|
7
|
Illman M, Laaksonen K, Liljeström M, Piitulainen H, Forss N. The effect of alertness and attention on the modulation of the beta rhythm to tactile stimulation. Physiol Rep 2021; 9:e14818. [PMID: 34173721 PMCID: PMC8234481 DOI: 10.14814/phy2.14818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Beta rhythm modulation has been used as a biomarker to reflect the functional state of the sensorimotor cortex in both healthy subjects and patients. Here, the effect of reduced alertness and active attention to the stimulus on beta rhythm modulation was investigated. Beta rhythm modulation to tactile stimulation of the index finger was recorded simultaneously with MEG and EEG in 23 healthy subjects (mean 23, range 19–35 years). The temporal spectral evolution method was used to obtain the peak amplitudes of beta suppression and rebound in three different conditions (neutral, snooze, and attention). Neither snooze nor attention to the stimulus affected significantly the strength of beta suppression nor rebound, although a decrease in suppression and rebound strength was observed in some subjects with a more pronounced decrease of alertness. The reduction of alertness correlated with the decrease of suppression strength both in MEG (left hemisphere r = 0.49; right hemisphere r = 0.49, *p < 0.05) and EEG (left hemisphere r = 0.43; right hemisphere r = 0.72, **p < 0.01). The results indicate that primary sensorimotor cortex beta suppression and rebound are not sensitive to slightly reduced alertness nor active attention to the stimulus at a group level. Hence, tactile stimulus‐induced beta modulation is a suitable tool for assessing the sensorimotor cortex function at a group level. However, subjects’ alertness should be maintained high during recordings to minimize individual variability.
Collapse
Affiliation(s)
- Mia Illman
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Harri Piitulainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Piitulainen H, Illman M, Jousmäki V, Bourguignon M. Feasibility and reproducibility of electroencephalography-based corticokinematic coherence. J Neurophysiol 2020; 124:1959-1967. [DOI: 10.1152/jn.00562.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most important message in this report is that the corticokinematic coherence (CKC) method is a feasible and reproducible tool to quantify, map, and follow cortical proprioceptive (“the movement sense”) processing using EEG that is more widely available for CKC recordings than previously used magnetoencephalographic designs, in basic research, but especially in clinical environments. We provide useful recommendations for optimal EEG derivations for cost-effective experimental designs, allowing large sample size studies.
Collapse
Affiliation(s)
- Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Mia Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Aalto NeuroImaging, MEG Core, Aalto University School of Science, Espoo, Finland
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Aalto NeuroImaging, MEG Core, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, Université libre de Bruxelles Neuroscience Institute, Brussels, Belgium
- Laboratoire Cognition Langage et Développement, Université libre de Bruxelles (ULB)–ULB Neuroscience Institute, Brussels, Belgium
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| |
Collapse
|
9
|
Walker S, Monto S, Piirainen JM, Avela J, Tarkka IM, Parviainen TM, Piitulainen H. Older Age Increases the Amplitude of Muscle Stretch-Induced Cortical Beta-Band Suppression But Does not Affect Rebound Strength. Front Aging Neurosci 2020; 12:117. [PMID: 32508626 PMCID: PMC7248310 DOI: 10.3389/fnagi.2020.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Healthy aging is associated with deterioration of the sensorimotor system, which impairs balance and somatosensation. However, the exact age-related changes in the cortical processing of sensorimotor integration are unclear. This study investigated primary sensorimotor cortex (SM1) oscillations in the 15-30 Hz beta band at rest and following (involuntary) rapid stretches to the triceps surae muscles (i.e., proprioceptive stimulation) of young and older adults. A custom-built, magnetoencephalography (MEG)-compatible device was used to deliver rapid (190°·s-1) ankle rotations as subjects sat passively in a magnetically-shielded room while MEG recorded their cortical signals. Eleven young (age 25 ± 3 years) and 12 older (age 70 ± 3 years) adults matched for physical activity level demonstrated clear 15-30 Hz beta band suppression and rebound in response to the stretches. A sub-sample (10 young and nine older) were tested for dynamic balance control on a sliding platform. Older adults had greater cortical beta power pre-stretch (e.g., right leg: 4.0 ± 1.6 fT vs. 5.6 ± 1.7 fT, P = 0.044) and, subsequently, greater normalized movement-related cortical beta suppression post-proprioceptive stimulation (e.g., right leg: -5.8 ± 1.3 vs. -7.6 ± 1.7, P = 0.01) than young adults. Furthermore, poorer balance was associated with stronger cortical beta suppression following proprioceptive stimulation (r = -0.478, P = 0.038, n = 19). These results provide further support that cortical processing of proprioception is hindered in older adults, potentially (adversely) influencing sensorimotor integration. This was demonstrated by the impairment of prompt motor action control, i.e., regaining perturbed balance. Finally, SM1 cortex beta suppression to a proprioceptive stimulus seems to indicate poorer sensorimotor functioning in older adults.
Collapse
Affiliation(s)
- Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simo Monto
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo M Piirainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina M Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Harri Piitulainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
10
|
Tang CW, Hsiao FJ, Lee PL, Tsai YA, Hsu YF, Chen WT, Lin YY, Stagg CJ, Lee IH. β-Oscillations Reflect Recovery of the Paretic Upper Limb in Subacute Stroke. Neurorehabil Neural Repair 2020; 34:450-462. [PMID: 32321366 PMCID: PMC7250642 DOI: 10.1177/1545968320913502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background. Recovery of upper limb function post-stroke can be partly predicted by initial motor function, but the mechanisms underpinning these improvements have yet to be determined. Here, we sought to identify neural correlates of post-stroke recovery using longitudinal magnetoencephalography (MEG) assessments in subacute stroke survivors. Methods. First-ever, subcortical ischemic stroke survivors with unilateral mild to moderate hand paresis were evaluated at 3, 5, and 12 weeks after stroke using a finger-lifting task in the MEG. Cortical activity patterns in the β-band (16-30 Hz) were compared with matched healthy controls. Results. All stroke survivors (n=22; 17 males) had improvements in action research arm test (ARAT) and Fugl-Meyer upper extremity (FM-UE) scores between 3 and 12 weeks. At 3 weeks post-stroke the peak amplitudes of the movement-related ipsilesional β-band event-related desynchronization (β-ERD) and synchronization (β-ERS) in primary motor cortex (M1) were significantly lower than the healthy controls (p<0.001) and were correlated with both the FM-UE and ARAT scores (r=0.51-0.69, p<0.017). The decreased β-ERS peak amplitudes were observed both in paretic and non-paretic hand movement particularly at 3 weeks post-stroke, suggesting a generalized disinhibition status. The peak amplitudes of ipsilesional β-ERS at week 3 post-stroke correlated with the FM-UE score at 12 weeks (r=0.54, p=0.03) but no longer significant when controlling for the FM-UE score at 3 weeks post-stroke.Conclusions. Although early β-band activity does not independently predict outcome at 3 months after stroke, it mirrors functional changes, giving a potential insight into the mechanisms underpinning recovery of motor function in subacute stroke.
Collapse
Affiliation(s)
- Chih-Wei Tang
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Fu-Jung Hsiao
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Po-Lei Lee
- National Central University, Taoyuan County, Taiwan
| | - Yun-An Tsai
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Wei-Ta Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - I-Hui Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Comparing MEG and EEG in detecting the ~20-Hz rhythm modulation to tactile and proprioceptive stimulation. Neuroimage 2020; 215:116804. [PMID: 32276061 DOI: 10.1016/j.neuroimage.2020.116804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of the ~20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ~20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated. Here, we compare these two methods in the evaluating of ~20-Hz activity modulation to somatosensory stimuli. Rhythmic ~20-Hz activity during separate tactile and proprioceptive stimulation of the right and left index finger was recorded simultaneously with MEG and EEG in twenty-four healthy participants. Both tactile and proprioceptive stimulus produced a clear suppression at 300-350 ms followed by a subsequent rebound at 700-900 ms after stimulus onset, detected at similar latencies both with MEG and EEG. The relative amplitudes of suppression and rebound correlated strongly between MEG and EEG recordings. However, the relative strength of suppression and rebound in the contralateral hemisphere (with respect to the stimulated hand) was significantly stronger in MEG than in EEG recordings. Our results indicate that MEG recordings produced signals with higher signal-to-noise ratio than EEG, favoring MEG as an optimal tool for studies evaluating sensorimotor cortical functions. However, the strong correlation between MEG and EEG results encourages the use of EEG when translating studies to clinical practice. The clear advantage of EEG is the availability of the method in hospitals and bed-side measurements at the acute phase.
Collapse
|
12
|
Zandvliet SB, van Wegen EEH, Campfens SF, van der Kooij H, Kwakkel G, Meskers CGM. Position-Cortical Coherence as a Marker of Afferent Pathway Integrity Early Poststroke: A Prospective Cohort Study. Neurorehabil Neural Repair 2020; 34:344-359. [PMID: 32129142 PMCID: PMC7168808 DOI: 10.1177/1545968319893289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background. Addressing the role of somatosensory impairment, that is, afferent pathway integrity, in poststroke motor recovery may require neurophysiological assessment. Objective. We investigated the longitudinal construct validity of position-cortical coherence (PCC), that is, the agreement between mechanically evoked wrist perturbations and electroencephalography (EEG), as a measure of afferent pathway integrity. Methods. PCC was measured serially in 48 patients after a first-ever ischemic stroke in addition to Fugl-Meyer motor assessment of the upper extremity (FM-UE) and Nottingham Sensory Assessment hand-finger subscores (EmNSA-HF, within 3 and at 5, 12, and 26 weeks poststroke. Changes in PCC over time, represented by percentage presence of PCC (%PCC), mean amplitude of PCC over the affected (Amp-A) and nonaffected hemisphere (Amp-N) and a lateralization index (L-index), were analyzed, as well as their association with FM-UE and EmNSA-HF. Patients were retrospectively categorized based on FM-UE score at baseline and 26 weeks poststroke into high- and low-baseline recoverers and non-recoverers. Results. %PCC increased from baseline to 12 weeks poststroke (β = 1.6%, CI = 0.32% to 2.86%, P = .01), which was no longer significant after adjusting for EmNSA-HF and FM-UE. A significant positive association was found between %PCC, Amp-A, and EmNSA-HF. Low-baseline recoverers (n = 8) showed longitudinally significantly higher %PCC than high-baseline recoverers (n = 23). Conclusions. We demonstrated the longitudinal construct validity of %PCC and Amp-A as a measure of afferent pathway integrity. A high %PCC in low-baseline recoverers suggests that this measure also contains information on cortical excitability. Use of PCC as an EEG-based measure to address the role of somatosensory integrity to motor recovery poststroke requires further attention.
Collapse
Affiliation(s)
- Sarah B Zandvliet
- Department of Rehabilitation Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, , Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Erwin E H van Wegen
- Department of Rehabilitation Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, , Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - S Floor Campfens
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, , Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.,Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centres, Reade, Amsterdam, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, , Amsterdam Neuroscience and Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Bönstrup M, Krawinkel L, Schulz R, Cheng B, Feldheim J, Thomalla G, Cohen LG, Gerloff C. Low-Frequency Brain Oscillations Track Motor Recovery in Human Stroke. Ann Neurol 2019; 86:853-865. [PMID: 31604371 DOI: 10.1002/ana.25615] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The majority of patients with stroke survive the acute episode and live with enduring disability. Effective therapies to support recovery of motor function after stroke are yet to be developed. Key to this development is the identification of neurophysiologic signals that mark recovery and are suitable and susceptible to interventional therapies. Movement preparatory low-frequency oscillations (LFOs) play a key role in cortical control of movement. Recent animal data point to a mechanistic role of motor cortical LFOs in stroke motor deficits and demonstrate neuromodulation intervention with therapeutic benefit. Their relevance in human stroke pathophysiology is unknown. METHODS We studied the relationship between movement-preparatory LFOs during the performance of a visuomotor grip task and motor function in a longitudinal (<5 days, 1 and 3 months) cohort study of 33 patients with motor stroke and in 19 healthy volunteers. RESULTS Acute stroke-lesioned brains fail to generate the LFO signal. Whereas in healthy humans, a transient occurrence of LFOs preceded movement onset at predominantly contralateral frontoparietal motor regions, recordings in patients revealed that movement-preparatory LFOs were substantially diminished to a level of 38% after acute stroke. LFOs progressively increased at 1 and 3 months. This re-emergence closely tracked the recovery of motor function across several movement qualities including grip strength, fine motor skills, and synergies and was frequency band specific. INTERPRETATION Our results provide the first human evidence for a link between movement-preparatory LFOs and functional recovery after stroke, promoting their relevance for movement control. These results suggest that it may be interesting to explore targeted, LFOs-restorative brain stimulation therapy in human stroke patients. ANN NEUROL 2019;86:853-865.
Collapse
Affiliation(s)
- Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Krawinkel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Post-stimulus beta responses are modulated by task duration. Neuroimage 2019; 206:116288. [PMID: 31654762 PMCID: PMC6985901 DOI: 10.1016/j.neuroimage.2019.116288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023] Open
Abstract
Modulation of beta-band neural oscillations during and following movement is a robust marker of brain function. In particular, the post-movement beta rebound (PMBR), which occurs on movement cessation, has been related to inhibition and connectivity in the healthy brain, and is perturbed in disease. However, to realise the potential of the PMBR as a biomarker, its modulation by task parameters must be characterised and its functional role determined. Here, we used MEG to image brain electrophysiology during and after a grip-force task, with the aim to characterise how task duration, in the form of an isometric contraction, modulates beta responses. Fourteen participants exerted a 30% maximum voluntary grip-force for 2, 5 and 10 s. Our results showed that the amplitude of the PMBR is modulated by task duration, with increasing duration significantly reducing PMBR amplitude and increasing its time-to-peak. No variation in the amplitude of the movement related beta decrease (MRBD) with task duration was observed. To gain insight into what may underlie these trial-averaged results, we used a Hidden Markov Model to identify the individual trial dynamics of a brain network encompassing bilateral sensorimotor areas. The rapidly evolving dynamics of this network demonstrated similar variation with task parameters to the ‘classical’ rebound, and we show that the modulation of the PMBR can be well-described in terms of increased frequency of beta events on a millisecond timescale rather than modulation of beta amplitude during this time period. Our results add to the emerging picture that, in the case of a carefully controlled paradigm, beta modulation can be systematically controlled by task parameters and such control can reveal new information as to the processes that generate the average beta timecourse. These findings will support design of clinically relevant paradigms and analysis pipelines in future use of the PMBR as a marker of neuropathology. The post-movement beta rebound is modulated by task duration. Increasing task duration reduces amplitude of the post-movement beta rebound. The modulation is explained by increased frequency of short-timescale beta events.
Collapse
|
15
|
A systematic review investigating the relationship of electroencephalography and magnetoencephalography measurements with sensorimotor upper limb impairments after stroke. J Neurosci Methods 2018; 311:318-330. [PMID: 30118725 DOI: 10.1016/j.jneumeth.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Predicting sensorimotor upper limb outcome receives continued attention in stroke. Neurophysiological measures by electroencephalography (EEG) and magnetoencephalography (MEG) could increase the accuracy of predicting sensorimotor upper limb recovery. NEW METHOD The aim of this systematic review was to summarize the current evidence for EEG/MEG-based measures to index neural activity after stroke and the relationship between abnormal neural activity and sensorimotor upper limb impairment. Relevant papers from databases EMBASE, CINHAL, MEDLINE and pubMED were identified. Methodological quality of selected studies was assessed with the Modified Downs and Black form. Data collected was reported descriptively. RESULTS Seventeen papers were included; 13 used EEG and 4 used MEG applications. Findings showed that: (a) the presence of somatosensory evoked potentials in the acute stage are related to better outcome of upper limb motor impairment from 10 weeks to 6 months post-stroke; (b) an interhemispheric imbalance of cortical oscillatory signals associated with upper limb impairment; and (c) predictive models including beta oscillatory cortical signal factors with corticospinal integrity and clinical measures could enhance upper limb motor prognosis. COMPARING WITH EXISTING METHOD The combination of neurological biomarkers with clinical measures results in higher statistical power than using neurological biomarkers alone when predicting motor recovery in stroke. CONCLUSIONS Alterations in neural activity by means of EEG and MEG are demonstrated from the early post-stroke stage onwards, and related to sensorimotor upper limb impairment. Future work exploring cortical oscillatory signals in the acute stage could provide further insight about prediction of upper limb sensorimotor recovery.
Collapse
|
16
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Recovery of the 20 Hz Rebound to Tactile and Proprioceptive Stimulation after Stroke. Neural Plast 2018; 2018:7395798. [PMID: 29681928 PMCID: PMC5851173 DOI: 10.1155/2018/7395798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
Sensorimotor integration is closely linked to changes in motor-cortical excitability, observable in the modulation of the 20 Hz rhythm. After somatosensory stimulation, the rhythm transiently increases as a rebound that reflects motor-cortex inhibition. Stroke-induced alterations in afferent input likely affect motor-cortex excitability and motor recovery. To study the role of somatosensory afferents in motor-cortex excitability after stroke, we employed magnetoencephalographic recordings (MEG) at 1–7 days, one month, and 12 months in 23 patients with stroke in the middle cerebral artery territory and 22 healthy controls. The modulation of the 20 Hz motor-cortical rhythm was evaluated to two different somatosensory stimuli, tactile stimulation, and passive movement of the index fingers. The rebound strengths to both stimuli were diminished in the acute phase compared to the controls and increased significantly during the first month after stroke. However, only the rebound amplitudes to tactile stimuli fully recovered within the follow-up period. The rebound strengths in the affected hemisphere to both stimuli correlated strongly with the clinical scores across the follow-up. The results show that changes in the 20 Hz rebound to both stimuli behave similarly and occur predominantly during the first month. The 20 Hz rebound is a potential marker for predicting motor recovery after stroke.
Collapse
|