1
|
Egger M, Bergmann J, Krewer C, Jahn K, Müller F. Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial. J Neurol Phys Ther 2024; 48:178-187. [PMID: 38912852 DOI: 10.1097/npt.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND PURPOSE Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy. METHODS Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up. RESULTS Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose. DISCUSSION AND CONCLUSIONS Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
Collapse
Affiliation(s)
- Marion Egger
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany (M.E., J.B., C.K., K.J., F.M.); Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (M.E.); German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität in Munich, Munich, Germany (J.B., K.J.); and Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany (C.K.)
| | | | | | | | | |
Collapse
|
2
|
Pan H, Liu TW, Ng SSM, Chen PM, Chung RCK, Lam SSL, Li CSK, Chan CCC, Lai CWK, Ng WWL, Tang MWS, Hui E, Woo J. Effects of mirror therapy with electrical stimulation for upper limb recovery in people with stroke: a systematic review and meta-analysis. Disabil Rehabil 2024:1-16. [PMID: 38334111 DOI: 10.1080/09638288.2024.2310757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To provide updated evidence about the effects of MT with ES for recovering upper extremities motor function in people with stroke. METHODS Systematic review and meta-analysis were completed. Methodological quality was assessed using the version 2 of the Cochrane risk-of-bias tool. The GRADE approach was employed to assess the certainty of evidence. RESULTS A total of 16 trials with 773 participants were included in this review. The results demonstrated that MT with ES was more effective than sham (standardized mean difference [SMD], 1.89 [1.52-2.26]) and ES alone (SMD, 0.42 [0.11-0.73]) with low quality of evidence, or MT alone (SMD, 0.47[0.04-0.89]) with low quality of evidence for improving upper extremity motor control assessed using Fugl-Meyer Assessment. MT with ES had significant improvement of (MD, 6.47 [1.92-11.01]) the upper extremity gross gripping function assessed using the Action Research Arm Test compared with MT alone with low quality of evidence. MT combined with ES was more effective than sham group (SMD, 1.17 [0.42-1.93) for improving the ability to perform activities of daily living with low quality of evidence assessed using Motor Activity Log. CONCLUSION MT with ES may be effective in improving upper limb motor recovery in people with stroke.
Collapse
Affiliation(s)
- Hong Pan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Tai Wa Liu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China (SAR)
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Pei Ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Stefanie S L Lam
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Carol S K Li
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles C C Chan
- Department of Physiotherapy, Shatin Hospital, Hong Kong, China (SAR)
| | - Charles W K Lai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China (SAR)
| | - Winnie W L Ng
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China (SAR)
| | - Maria W S Tang
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Elsie Hui
- Department of Medicine and Geriatrics, Shatin Hospital, Hong Kong, China (SAR)
| | - Jean Woo
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (SAR)
| |
Collapse
|
3
|
Zhang M, Zhu F, Jia F, Wu Y, Wang B, Gao L, Chu F, Tang W. Efficacy of brain-computer interfaces on upper extremity motor function rehabilitation after stroke: A systematic review and meta-analysis. NeuroRehabilitation 2024; 54:199-212. [PMID: 38143387 DOI: 10.3233/nre-230215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND The recovery of upper limb function is crucial to the daily life activities of stroke patients. Brain-computer interface technology may have potential benefits in treating upper limb dysfunction. OBJECTIVE To systematically evaluate the efficacy of brain-computer interfaces (BCI) in the rehabilitation of upper limb motor function in stroke patients. METHODS Six databases up to July 2023 were reviewed according to the PRSIMA guidelines. Randomized controlled trials of BCI-based upper limb functional rehabilitation for stroke patients were selected for meta-analysis by pooling standardized mean difference (SMD) to summarize the evidence. The Cochrane risk of bias tool was used to assess the methodological quality of the included studies. RESULTS Twenty-five studies were included. The studies showed that BCI had a small effect on the improvement of upper limb function after the intervention. In terms of total duration of training, < 12 hours of training may result in better rehabilitation, but training duration greater than 12 hours suggests a non significant therapeutic effect of BCI training. CONCLUSION This meta-analysis suggests that BCI has a slight efficacy in improving upper limb function and has favorable long-term outcomes. In terms of total duration of training, < 12 hours of training may lead to better rehabilitation.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Feilong Zhu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fan Jia
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Yu Wu
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Departments of Rehabilitation Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Gao
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Fengming Chu
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Wei Tang
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China
| |
Collapse
|
4
|
Shou YZ, Wang XH, Yang GF. Verum versus Sham brain-computer interface on upper limb function recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e34148. [PMID: 37390271 PMCID: PMC10313240 DOI: 10.1097/md.0000000000034148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Previous clinical trials have reported that the brain-computer interface (BCI) is a useful management tool for upper limb function recovery (ULFR) in stroke. However, there is insufficient evidence regarding this topic. Thus, this study aimed to investigate the effectiveness of verum versus sham BCI on the ULFR in stroke patients. METHODS We comprehensively searched the Cochrane Library, PUBMED, EMBASE, Web of Science, and China National Knowledge Infrastructure databases from their inception to January 1, 2023. Randomized clinical trials (RCTs) assessing the effectiveness and safety of BCI for ULFR after stroke were included. The outcomes were the Fugl-Meyer Assessment for Upper Extremity, Wolf Motor Function Test, Modified Barthel Index, motor activity log, and Action Research Arm Test. The methodological quality of all the included randomized controlled trials was evaluated using the Cochrane risk-of-bias tool. Statistical analysis was performed using RevMan 5.4 software. RESULTS Eleven eligible studies involving 334 patients were included. The results of the meta-analysis showed significant differences in the Fugl-Meyer Assessment for Upper Extremity (mean difference [MD] = 4.78, 95% confidence interval [CI] [1.90, 7.65], I2 = 0%, P = .001) and Modified Barthel Index (MD = 7.37, 95% CI [1.89, 12.84], I2 = 19%, P = .008). However, no significant differences were found on motor activity log (MD = -0.70, 95% CI [-3.17, 1.77]), Action Research Arm Test (MD = 3.05, 95% CI [-8.33, 14.44], I2 = 0%, P = .60), and Wolf Motor Function Test (MD = 4.23, 95% CI [-0.55, 9.01], P = .08). CONCLUSION BCI may be an effective management strategy for ULFR in stroke patients. Future studies with larger sample size and strict design are still needed to warrant the current findings.
Collapse
Affiliation(s)
- Yi-zhou Shou
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xin-hua Wang
- Department of Tuina, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gui-fen Yang
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
García-Rudolph A, Soriano I, Becerra H, Madai VI, Frey D, Opisso E, Tormos JM, Bernabeu M. Predicting models for arm impairment: External validation of the Scandinavian models and identification of new predictors in post-acute stroke settings. NeuroRehabilitation 2023:NRE220233. [PMID: 37248917 DOI: 10.3233/nre-220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Post-stroke arm impairment at rehabilitation admission as predictor of discharge arm impairment was consistently reported as extremely useful. Several models for acute prediction exist (e.g. the Scandinavian), though lacking external validation and larger time-window admission assessments. OBJECTIVES (1) use the 33 Fugl-Meyer Assessment-Upper Extremity (FMA-UE) individual items to predict total FMA-UE score at discharge of patients with ischemic stroke admitted to rehabilitation within 90 days post-injury, (2) use eight individual items (seven from the Scandinavian study plus the top predictor item from objective 1) to predict mild impairment (FMA-UE≥48) at discharge and (3) adjust the top three models from objective 2 with known confounders. METHODS This was an observational study including 287 patients (from eight settings) admitted to rehabilitation (2009-2020). We applied regression models to candidate predictors, reporting adjusted R2, odds ratios and ROC-AUC using 10-fold cross-validation. RESULTS We achieved good predictive power for the eight item-level models (AUC: 0.70-0.82) and for the three adjusted models (AUC: 0.85-0.88). We identified finger mass flexion as new item-level top predictor (AUC:0.88) and time to admission (OR = 0.9(0.9;1.0)) as only common significant confounder. CONCLUSION Scandinavian item-level predictors are valid in a different context, finger mass flexion outperformed known predictors, days-to-admission predict discharge mild arm impairment.
Collapse
Affiliation(s)
- Alejandro García-Rudolph
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ignasi Soriano
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Helard Becerra
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Vince Istvan Madai
- CLAIM Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- School of Computing and Digital Technology, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, Birmingham, UK
| | - Dietmar Frey
- CLAIM Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eloy Opisso
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Josep María Tormos
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Montserrat Bernabeu
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
6
|
Henriette B, Marianne N, Rønne PJ, Glavin KM, Wesenberg KT, Thorgaard SS, Troels W. Test-Retest Reliability and Agreement of Single Pulse Transcranial Magnetic Stimulation (TMS) for Measuring Activity in Motor Cortex in Patients With Acute Ischemic Stroke. Neurosci Insights 2022; 17:26331055221145002. [PMID: 36578525 PMCID: PMC9791285 DOI: 10.1177/26331055221145002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) is often used to examine neurophysiology. We aimed to investigate the inter-rater reliability and agreement of single pulse TMS in hospitalised acute ischemic stroke patients. Methods Thirty-one patients with first-time acute ischemic stroke (median age 72 (IQR 64-75), 35% females) underwent TMS motor threshold (MT) assessment in 4 muscles bilaterally, conducted by 1 of 2 physiotherapists. Test-retest reliability was evaluated using a two-way random effects model (2,1) absolute agreement-type Interclass Correlation Coefficient (ICC). Standard Error of Measurement (SEM) and Smallest Detectable Change (SDC) were used to evaluate agreement. Results Reliability, SEM, and SDC of TMS was found to be moderate in right opponens pollicis (0.78 [CI 95% 0.55-0.89], SEM: 4.51, SDC: 12.51), good in right vastus medialis and tibial anterior (0.88 [CI 95% 0.72-0.96], SEM: 2.89, SDC: 8.01 and 0.88 [CI 95% 0.76-0.94], SEM: 2.88, SDC: 7.98 respectively), and excellent in right and left biceps brachii (0.98 [CI 95% 0.96-0.99], SEM: 1.79 SDC: 4.96, and 0.94 [CI 95% 0.89-0.97], SEM: 2.17 SDC: 6.01), opponens pollicis (0.92 [CI 95% 0.83-0.96], SEM: 2.68 SDC: 8.26, vastus medialis (0.92 [CI 95% 0.84-0.96], SEM: 2.87 SDC: 7.95), and tibial anterior (0.93 [CI 95% 0.86-0.96], SEM: 2.51 SDC: 6.95). Conclusion The TMS demonstrated moderate to excellent inter-rater reliability confirming the ability of these measures to reliably discriminate between individuals in the current study sample. Improvements of less than 4.96 to 12.51 could be a result of measurement error and may therefore not be considered a true change.
Collapse
Affiliation(s)
- Busk Henriette
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Region Zealand, Slagelse, Denmark,Department of Neurology, Zealand University Hospital, Roskilde, Sjaelland, Denmark,Busk Henriette, Department of Neurology, Zealand University Hospital, Sygehusvej 10, Roskilde DK 4000, Denmark.
| | - Nilsen Marianne
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Region Zealand, Slagelse, Denmark
| | - Pedersen Julie Rønne
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Syddanmark, Denmark
| | | | | | - Skou Søren Thorgaard
- The Research Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Region Zealand, Slagelse, Denmark,Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Wienecke Troels
- Department of Neurology, Zealand University Hospital, Roskilde, Sjaelland, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Neuromuscular Electric Stimulation in Addition to Exercise Therapy in Patients with Lower Extremity Paresis Due to Acute Ischemic Stroke. A proof-of-concept randomised controlled trial. J Stroke Cerebrovasc Dis 2021; 30:106050. [PMID: 34418670 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Exercise therapy and neuromuscular electrical stimulation (NMES) during the initial 14 days after stroke may benefit recovery of gait. We aimed to determine whether poststroke NMES of vastus medial and tibial muscles during exercise therapy is more effective than exercise therapy alone. MATERIALS AND METHODS In this proof-of-concept randomised trial patients with first-ever acute ischemic stroke and a leg paresis (40-85 years of age) were randomised (1:1) to 10 min of daily NMES + exercise therapy or exercise therapy alone. Primary outcome was the between-group difference in change in 6 min Walk Test (6MWT) at 90 days post stroke estimated with a mixed regression model. Secondary outcomes included 10 m Walk Test, Fugl-Meyer Motor Assessment, Guralnik Timed Standing Balance, Sit to Stand, Timed Up and Go, EQ-5D-5L, Montreal Cognitive Assessment and Becks Depression Inventory. RESULTS 50 stroke survivors (25 in each group) with a mean age of 67 years (range 43-83) were included. An insignificant between-group difference in change of 28.3 m (95%CI -16.0 to 72.6, p = 0.23, adjusted for baseline) in 6MWT at 90-days follow-up was found, in favour of the NMES group. All secondary outcomes showed no statistically significant between-group difference. The conclusion was that adding NMES to exercise therapy had no effect on poststroke walking distance measured by the 6 MWT or any of the secondary outcomes. CONCLUSIONS In this proof-of-concept RCT, we demonstrated that NMES in addition to exercise therapy during the first 14 days after onset of ischemic stroke did not improve walking distance or any of the secondary outcomes. Future studies with a longer trial period, stratifying patients into subgroups with comparable patterns of expected spontaneous recovery - if possible within 48 h post stroke, and greater sample size, than in this study are suggestions of how rehabilitation research could go on exploring the potential for NMES as an amplifier in stroke recovery.
Collapse
|
8
|
Stoykov ME, Heidle C, Kang S, Lodesky L, Maccary LE, Madhavan S. Sensory-Based Priming for Upper Extremity Hemiparesis After Stroke: A Scoping Review. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2021; 42:65-78. [PMID: 34311607 DOI: 10.1177/15394492211032606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory priming is a technique to facilitate neuroplasticity and improve motor skills after injury. Common sensory priming modalities include peripheral nerve stimulation/somatosensory electrical stimulation (PNS/SES), transient functional deafferentation (TFD), and vibration. The aim of this study was to determine whether sensory priming with a motor intervention results in improved upper limb motor impairment or function after stroke. PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, and EMBASE were the databases used to search the literature in July 2020. This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and recommendations for the Cochrane collaboration. In total, 30 studies were included in the analysis: three studies examined TFD, 16 examined PNS/SES, 10 studied vibration, and one combined the three stimulation techniques. Most studies reported significant improvements for participants receiving sensory priming. Given the low risk, it may be advantageous to use sensory-based priming prior to or concurrent with upper limb training after stroke.
Collapse
Affiliation(s)
- Mary E Stoykov
- Shirley Ryan AbilityLab, Chicago, IL, USA.,Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
9
|
Wolf S, Gerloff C, Backhaus W. Predictive Value of Upper Extremity Outcome Measures After Stroke-A Systematic Review and Metaregression Analysis. Front Neurol 2021; 12:675255. [PMID: 34177780 PMCID: PMC8222610 DOI: 10.3389/fneur.2021.675255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
A better understanding of motor recovery after stroke requires large-scale, longitudinal trials applying suitable assessments. Currently, there is an abundance of upper limb assessments used to quantify recovery. How well various assessments can describe upper limb function change over 1 year remains uncertain. A uniform and feasible standard would be beneficial to increase future studies' comparability on stroke recovery. This review describes which assessments are common in large-scale, longitudinal stroke trials and how these quantify the change in upper limb function from stroke onset up to 1 year. A systematic search for well-powered stroke studies identified upper limb assessments classifying motor recovery during the initial year after a stroke. A metaregression investigated the association between assessments and motor recovery within 1 year after stroke. Scores from nine common assessments and 4,433 patients were combined and transformed into a standardized recovery score. A mixed-effects model on recovery scores over time confirmed significant differences between assessments (P < 0.001), with improvement following the weeks after stroke present when measuring recovery using the Action Research Arm Test (β = 0.013), Box and Block test (β = 0.011), Fugl–Meyer Assessment (β = 0.007), or grip force test (β = 0.023). A last-observation-carried-forward analysis also highlighted the peg test (β = 0.017) and Rivermead Assessment (β = 0.011) as additional, valuable long-term outcome measures. Recovery patterns and, thus, trial outcomes are dependent on the assessment implemented. Future research should include multiple common assessments and continue data collection for a full year after stroke to facilitate the consensus process on assessments measuring upper limb recovery.
Collapse
Affiliation(s)
- Silke Wolf
- Experimental Electrophysiology and Neuroimaging (xENi), Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Experimental Electrophysiology and Neuroimaging (xENi), Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Winifried Backhaus
- Experimental Electrophysiology and Neuroimaging (xENi), Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Busk H, Alt Murphy M, Korsman R, Skou ST, Wienecke T. Cross-cultural translation and adaptation of the Danish version of the Fugl-Meyer assessment for post stroke sensorimotor function. Disabil Rehabil 2021; 44:4888-4895. [PMID: 34027755 DOI: 10.1080/09638288.2021.1919215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The Fugl-Meyer assessment (FMA) is the most widely used and recommended clinical assessment scale for evaluating sensorimotor impairments in stroke patients, but an official Danish version has not been available. This study aimed to perform a standardized translation and cross-cultural adaptation (TCCA) of the FMA into Danish. METHODS First, a comprehensive eight-step TCCA procedure including forward and backward translation and step-wise reviewing by proof-reader and bilingual physiotherapists, to ensure conceptual and semantic equivalence was applied to develop a Danish version of the FMA. Second, inter-rater reliability of the Danish FMA was assessed in 10 subacute stroke patients. Svensson's statistical method designed for rank-based paired ordinal data to identify items showing non-systematic or systematic disagreements in relative position or concentration was used to make further improvements on translation. RESULTS A Danish FMA version was successfully made by the step-wise TCCA procedure. The clinical validation revealed satisfactory to excellent inter-tester reliability across all items (70-100%). Significant systematic disagreement either in position or concentration or both were observed in about 20% of the items. CONCLUSIONS The Danish version of the FMA was translated and adapted allowing for a wider standardized use of the FMA in stroke rehabilitation in Denmark.Implications for rehabilitationThe Fugl-Meyer assessment (FMA) is the most used and recommended clinical assessment scale for evaluating sensorimotor impairments in stroke patients.The translated and adapted Danish version of the FMA is now available for use in research and clinical practice in Denmark.This allows for a standardized and unified description of stroke motor recovery and severity in neurorehabilitation nationwide as well as the possibility to compare and conduct trials using FMA internationally.
Collapse
Affiliation(s)
- H Busk
- Department of Physiotherapy and Occupational Therapy, Naestved-Slagelse-Ringsted Hospitals, Slagelse, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - M Alt Murphy
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R Korsman
- Department of Physiotherapy and Occupational Therapy, Naestved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - S T Skou
- Department of Physiotherapy and Occupational Therapy, Naestved-Slagelse-Ringsted Hospitals, Slagelse, Denmark.,Department of Sports Science and Clinical Biomechanics, Research Unit for Musculoskeletal Function and Physiotherapy, University of Southern Denmark, Odense, Denmark
| | - T Wienecke
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Stockley RC, Hanna K, Connell L. To stimulate or not to stimulate? A rapid systematic review of repetitive sensory stimulation for the upper-limb following stroke. Arch Physiother 2020; 10:20. [PMID: 33292869 PMCID: PMC7708198 DOI: 10.1186/s40945-020-00091-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Repetitive sensory stimulation (RSS) is a therapeutic approach which involves repeated electrical stimulation of the skin's surface to improve function. This rapid systematic review aimed to describe the current evidence for repetitive sensory stimulation (RSS) in rehabilitation of the upper-limb for people who have had a stroke. MAIN TEXT Methods: Relevant studies were identified in a systematic search of electronic databases and hand-searching in February 2020. The findings of included studies were synthesized to describe: the safety of RSS, in whom and when after stroke it has been used, the doses used and its effectiveness. RESULTS Eight studies were included. No serious adverse events were reported. The majority of studies used RSS in participants with mild or moderate impairments and in the chronic stage after stroke. Four studies used RSS in a single treatment session, reporting significant improvements in strength and hand function. Findings from longitudinal studies showed few significant differences between control and experimental groups. Meta-analysis was not possible due to the heterogeneity of included studies. CONCLUSIONS This review suggests that there is insufficient evidence to support the use of RSS for the upper-limb after stroke in clinical practice. However, this review highlights several clear research priorities including establishing the mechanism and in whom RSS may work, its safety and optimal treatment parameters to improve function of the upper-limb after stroke.
Collapse
Affiliation(s)
- Rachel C Stockley
- Stroke Research Team, School of Nursing, Faculty of Health and Wellbeing, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Kerry Hanna
- School of Health Sciences, University of Liverpool, Liverpool, UK
| | - Louise Connell
- School of Sport and Health Sciences, Faculty of Health and Wellbeing, University of Central Lancashire, Preston, UK
| |
Collapse
|
12
|
Ghaziani E, Couppé C, Siersma V, Christensen H, Magnusson SP, Sunnerhagen KS, Persson HC, Alt Murphy M. Easily Conducted Tests During the First Week Post-stroke Can Aid the Prediction of Arm Functioning at 6 Months. Front Neurol 2020; 10:1371. [PMID: 31993016 PMCID: PMC6962352 DOI: 10.3389/fneur.2019.01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Prognostic models can estimate the recovery of arm functioning after stroke, guide the selection of individual training strategies, and inform patient selection in clinical trials. Several models for early prediction of arm recovery have been proposed, but their implementation has been hindered by insufficient external validation, limited evidence of their impact on patient outcomes, and reliance on predictors that are not feasible in regular clinical practice. Objectives: To determine the predictive value of new and previously reported tests that can be easily conducted in regular clinical settings for early prognosis of two levels of favorable arm recovery at 6 months post-stroke. Methods: We performed a secondary analysis of merged data (n = 223) from two Scandinavian prospective longitudinal cohorts. The candidate predictors were seven individual tests of motor function and the sensory function measured by the Fugl-Meyer Assessment of Upper Extremity within 7 days post-stroke, and the whole motor section of this assessment. For each candidate predictor, we calculated the adjusted odds ratio (OR) of two levels of residual motor impairment in the affected arm at 6 months post-stroke: moderate-to-mild (≥32 points on the motor section of the Fugl-Meyer Assessment of Upper Extremity, FMA-UE) and mild (FMA-UE ≥ 58 points). Results: Patients with partial shoulder abduction (OR 14.6), elbow extension (OR 15.9), and finger extension (OR 9.5) were more likely to reach FMA-UE ≥ 32. Patients with full function on all individual motor tests (OR 5.5–35.3) or partial elbow extension, pronation/supination, wrist dorsiflexion and grasping ability (OR 2.1–18.3) were more likely to achieve FMA-UE ≥ 58 compared with those with absent function. Intact sensory function (OR 2.0–2.2) and moderate motor impairment on the FMA-UE (OR 7.5) were also associated with favorable outcome. Conclusions: Easily conducted motor tests can be useful for early prediction of arm recovery. The added value of this study is the prediction of two levels of a favorable functional outcome from simple motor tests. This knowledge can be used in the development of prognostic models feasible in regular clinical settings, inform patient selection and stratification in future trials, and guide clinicians in the selection of individualized training strategies for improving arm functioning after stroke. Clinical Trial Registration:ClinicalTrials.gov: NCT02250365, NCT01115348.
Collapse
Affiliation(s)
- Emma Ghaziani
- Department of Physical and Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark
| | - Christian Couppé
- Department of Physical and Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Orthopaedic Surgery M, Institute of Sports Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Centre for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Volkert Siersma
- Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Christensen
- Department of Neurology, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Orthopaedic Surgery M, Institute of Sports Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Centre for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Katharina S Sunnerhagen
- Research Unit for Rehabilitation Medicine, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hanna C Persson
- Research Unit for Rehabilitation Medicine, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Margit Alt Murphy
- Research Unit for Rehabilitation Medicine, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|