1
|
Chen Y, Xia N, Li J, Liang W, Yin Y, Zhai L, Wang M, Wang Q, Zhang J. Effect of intermittent theta burst stimulation combined with acoustic startle priming motor training on upper limb motor function and neural plasticity in stroke individuals: study protocol for a randomised controlled proof-of-concept trial. BMJ Open 2025; 15:e090049. [PMID: 39894516 PMCID: PMC11792295 DOI: 10.1136/bmjopen-2024-090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION Stroke is a major cause of acquired disability globally, yet the neural mechanisms driving motor recovery post-stroke remain elusive. Recent research has underscored the growing significance of subcortical pathways in neural plasticity and motor control. Among these, the cortico-reticulospinal tract (CRST) has gained attention in rehabilitation due to its unique ascending and descending structural features as well as its cellular properties which position it as an excellent candidate to compensate for inadequate motor control post-stroke. However, the optimal strategies to harness the CRST for motor recovery remain unknown. Non-invasive modulation of the CRST presents a promising though challenging, therapeutic opportunity. Acoustic startle priming (ASP) training and intermittent theta burst stimulation (iTBS) are emerging as potential methods to regulate CRST function. This study aims to investigate the feasibility of segmentally modulating the cortico-reticular and reticulospinal tracts through ASP and iTBS while evaluating the resulting therapeutic effects. METHODS AND ANALYSIS This is a randomised, blinded interventional trial with three parallel groups. A total of 36 eligible participants will be randomly assigned to one of three groups: (1) iTBS+ASP group, (2) iTBS+non-ASP group, (3) sham iTBS+ASP group. The trial comprises four phases: baseline assessment, post-first intervention assessment, assessment after 3 weeks of intervention and a 4-week follow-up. The primary outcomes are the changes in the Fugl-Meyer Assessment-Upper Extremity and Modified Ashworth Scale after the 3-week intervention. Secondary outcomes include neurophysiological metrics and neuroimaging results from diffusion tensor imaging and resting-state functional MRI. ETHICS AND DISSEMINATION The trial is registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR2400085220) and Medical Ethics Committee of Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology (Registration No.TJ-IRB20231109). It will be conducted in the Departments of Rehabilitation Medicine and Radiology at Tongji Hospital in Wuhan, China. The findings will be disseminated through peer-reviewed journal publications and presentations at scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2400085220.
Collapse
Affiliation(s)
- Yu Chen
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Jinghong Li
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Weiqiang Liang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yangyang Yin
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Linhan Zhai
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Qiuxia Wang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Lim H, Cleland B, Madhavan S. Functional connectivity of proximal and distal lower limb muscles and impact on gait variability in stroke. Gait Posture 2023; 99:20-23. [PMID: 36327534 PMCID: PMC9832343 DOI: 10.1016/j.gaitpost.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Higher gait variability after stroke increases risk of falls and compromises safe community ambulation. Corticomotor connectivity plays an important role in walking after stroke, however, its relation to gait variability remains unknown. RESEARCH QUESTION Do corticomotor characteristics of the proximal and distal lower limb muscles predict gait variability in individuals with chronic stroke? METHODS Retrospective analysis of data from 30 individuals with chronic stroke was conducted. Corticomotor characteristics were measured in the paretic and non-paretic tibialis anterior (TA, distal muscle) and rectus femoris (RF, proximal muscle) using transcranial magnetic stimulation. We calculated corticomotor excitability ratio of paretic TA and RF (CMETA/RF), corticomotor excitability symmetry (CMEsym) between hemispheres for the TA and RF, and ipsilateral corticomotor excitability (ICE) of the paretic TA. Gait variability was quantified as the coefficient of variation of the paretic step length (spatial) and step time (temporal) during comfortable walking. Relations between corticomotor characteristics and gait variability were tested with multiple linear regression. RESULTS CMETA/RF and CMEsym of RF were significant predictors of spatial gait variability. Greater corticomotor input to the paretic RF compared to the paretic TA and greater symmetry of RF were related to higher spatial gait variability. There were no significant predictors of temporal gait variability. SIGNIFICANCE Corticomotor inputs to the proximal RF may be important for spatial gait variability, reflecting a compensatory role of RF in walking after stroke. Stroke survivors with relatively greater corticomotor input to the paretic RF may adopt compensatory strategy to enhance propulsion and achieve foot clearance, but it may also increase spatial gait variability, particularly when combined with impaired motor control of the paretic TA. These findings may provide novel rehabilitative targets to decrease gait variability and promote safe ambulation in individuals with stroke.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Brice Cleland
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA,Correspondence Address: Sangeetha Madhavan at Brain Plasticity Laboratory in the Department of Physical Therapy, University of Illinois at Chicago, 1919 W. Taylor St, IL 60612, United States. Tel: +1 312 3552517.
| |
Collapse
|
3
|
McCabe JP, Pundik S, Daly JJ. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sci 2022; 12:1055. [PMID: 36009118 PMCID: PMC9405607 DOI: 10.3390/brainsci12081055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions.
Collapse
Affiliation(s)
- Jessica P. McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Janis J. Daly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Cleland BT, Madhavan S. Motor overflow in the lower limb after stroke: insights into mechanisms. Eur J Neurosci 2022; 56:4455-4468. [PMID: 35775788 PMCID: PMC9380181 DOI: 10.1111/ejn.15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Motor overflow (involuntary muscle activation) is common after stroke, particularly in the non-paretic upper limb. Two potential cortical mechanisms are: 1) the contralesional hemisphere controls both limbs, and 2) inhibition from the ipsilesional to the contralesional hemisphere is diminished. Few studies have differentiated between these hypotheses or investigated motor overflow in the lower limb after stroke. To investigate these potential mechanisms, individuals with chronic stroke performed unilateral isometric and dynamic dorsiflexion. Motor overflow was quantified in the contralateral, resting (non-target) ankle. Transcranial magnetic stimulation was applied, and responses were measured in both legs. Relations between motor overflow, excitability of ipsilateral motor pathways, and interhemispheric inhibition were assessed. Non-target muscle activity (motor overflow) was greater during isometric and dynamic conditions than rest in both legs (p≤0.001) and was higher in the non-paretic than the paretic leg (p=0.03). Some participants (25%) had motor overflow >4SD above the group mean in the non-paretic leg. Greater motor overflow in the non-paretic leg was associated with lesser inhibition from the ipsilesional to the contralesional hemisphere (p=0.04). In both legs, non-target TMS responses were greater during the isometric and dynamic than the rest condition (p≤0.01), but not when normalized to background muscle activity. Overall, motor overflow occurred in both legs after stroke, suggesting a common bilateral mechanism. Our correlational results suggest that alterations in interhemispheric inhibition may contribute to motor overflow. Furthermore, the lack of differences in non-target MEPs between rest, isometric, and dynamic conditions, suggests that subcortical and/or spinal pathways may contribute to motor overflow.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Jang SH, Cho MJ. Role of the Contra-Lesional Corticoreticular Tract in Motor Recovery of the Paretic Leg in Stroke: A Mini-Narrative Review. Front Hum Neurosci 2022; 16:896367. [PMID: 35721363 PMCID: PMC9204517 DOI: 10.3389/fnhum.2022.896367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
This review discusses the role of the contra-lesional corticoreticular tract (CRT) in motor recovery of the paretic leg in stroke patients by reviewing related diffusion tensor tractography studies. These studies suggest that the contra-lesional CRT can contribute to the motor recovery of the paretic leg in stroke patients, particularly in patients with complete injuries of the ipsilesional corticospinal tract and CRT. Furthermore, a review study reported that the motor recovery of the paretic ankle dorsiflexor, which is mandatory for achieving a good gait pattern without braces in hemiparetic stroke patients, was closely related to the contra-lesional CRT. These results could be clinically important in neuro-rehabilitation. For example, the contra-lesional CRT could be a target for neuromodulation therapies in patients with complete injuries of the ipsilesional corticospinal tract and CRT. On the other hand, only three studies were reviewed in this review and one was a case report. Although the CRT has been suggested to be one of the ipsilateral motor pathways from the contra-lesional cerebral cortex to the paretic limbs in stroke, the role of the CRT has not been elucidated clearly. Therefore, further prospective follow-up studies combining functional neuroimaging and transcranial magnetic stimulation for the paretic leg with diffusion tensor tractography will be useful for elucidating the role of the contra-lesional CRT in stroke patients.
Collapse
|