1
|
Shen Y, Liu X, Yang Z, Zang W, Zhao Y. Spiking Neural Membrane Systems with Adaptive Synaptic Time Delay. Int J Neural Syst 2024; 34:2450028. [PMID: 38706265 DOI: 10.1142/s012906572450028x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.
Collapse
Affiliation(s)
- Yongshun Shen
- College of Business, Shandong Normal University, Jinan 250014, P. R. China
| | - Xuefu Liu
- College of Business, Shandong Normal University, Jinan 250014, P. R. China
| | - Zhen Yang
- College of Business, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenke Zang
- College of Business, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuzhen Zhao
- College of Business, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
2
|
Mercaldo F, Di Giammarco M, Ravelli F, Martinelli F, Santone A, Cesarelli M. Alzheimer's Disease Evaluation Through Visual Explainability by Means of Convolutional Neural Networks. Int J Neural Syst 2024; 34:2450007. [PMID: 38273799 DOI: 10.1142/s0129065724500072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background and Objective: Alzheimer's disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer's disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer's disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.
Collapse
Affiliation(s)
- Francesco Mercaldo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
| | - Marcello Di Giammarco
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Fabrizio Ravelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Fabio Martinelli
- Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy
| | - Antonella Santone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Mario Cesarelli
- Department of Engineering, University of Sannio, Benevento, Italy
| |
Collapse
|
3
|
Vicchietti ML, Ramos FM, Betting LE, Campanharo ASLO. Computational methods of EEG signals analysis for Alzheimer's disease classification. Sci Rep 2023; 13:8184. [PMID: 37210397 DOI: 10.1038/s41598-023-32664-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 05/22/2023] Open
Abstract
Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients.
Collapse
Affiliation(s)
- Mário L Vicchietti
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil
| | - Fernando M Ramos
- National Institute for Space Research, Earth System Science Center, São José dos Campos, 12227-010, Brazil
| | - Luiz E Betting
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu, 18618-687, Brazil
| | - Andriana S L O Campanharo
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University, Botucatu, 18618-689, Brazil.
| |
Collapse
|
4
|
Bourbakis NG, Michalopoulos K, Antonakakis M, Zervakis M. A New Multi-Resolution Approach to EEG Brain Modeling Using Local-Global Graphs and Stochastic Petri-Nets. Int J Neural Syst 2022; 32:2250006. [DOI: 10.1142/s012906572250006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent modeling of brain activities encompasses the fusion of different modalities. However, fusing brain modalities requires not only the efficient and compatible representation of the signals but also the benefits associated with it. For instance, the combination of the functional characteristics of EEGs with the structural features of functional magnetic resonance imaging contributes to a better interpretation localization of brain activities. In this paper, we consider the EEG signals as parallel 2D string images from which we extract their visual abstract representations of EEG features. This representation can benefit not only the EEG modeling of the signals but also a future fusion with another modality, like fMRI. In particular, the new methodology, called Bar-LG, provides a reduced discretization of the EEG signals into selected minima/maxima in order to be used in a form of tokens for EEG brain activities of interest. A formal context-free language is used to express and represent the extracted tokens for the selected active brain regions. Then, a Generalized Stochastic Petri-Nets (GSPN) model is used for expressing the functional associations and interactions of these EEG signals as 2D image regions. An illustrative EEG example of epileptic seizure is presented to show the Bar-LG methodology’s abstract capabilities.
Collapse
Affiliation(s)
- Nikolaos G. Bourbakis
- Center of Assistive Research Technologies (CART), Wright State University, Dayton, OH, USA
- Technical University of Crete (TUC), ECE Dept., Chania, Crete, Greece
| | - Kostas Michalopoulos
- Center of Assistive Research Technologies (CART), Wright State University, Dayton, OH, USA
| | | | - Michail Zervakis
- Technical University of Crete (TUC), ECE Dept., Chania, Crete, Greece
| |
Collapse
|
5
|
Ghanbari M, Zhou Z, Hsu LM, Han Y, Sun Y, Yap PT, Zhang H, Shen D. Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer's Disease. Neuroinformatics 2021; 20:391-403. [PMID: 34837154 DOI: 10.1007/s12021-021-09554-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Graph theory has been extensively used to investigate brain network topology and its changes in disease cohorts. However, many graph theoretic analysis-based brain network studies focused on the shortest paths or, more generally, cost-efficiency. In this work, we use two new concepts, connectedness and 2-connectedness, to measure different global properties compared to the previously widely adopted ones. We apply them to unravel interesting characteristics in the brain, such as redundancy design and further conduct a time-varying brain functional network analysis for characterizing the progression of Alzheimer's disease (AD). Specifically, we define different connectedness and 2-connectedness states and evaluate their dynamics in AD and its preclinical stage, mild cognitive impairment (MCI), compared to the normal controls (NC). Results indicate that, compared to MCI and NC, brain networks of AD tend to be more frequently connected at a sparse level. For MCI, we found that their brains are more likely to be 2-connected in the minimal connected state as well indicating increasing redundancy in brain connectivity. Such a redundant design could ensure maintained connectedness of the MCI's brain network in the case that pathological damages break down any link or silenced any node, making it possible to preserve cognitive abilities. Our study suggests that the redundancy in the brain functional chronnectome could be altered in the preclinical stage of AD. The findings can be successfully replicated in a retest study and with an independent MCI dataset. Characterizing redundancy design in the brain chronnectome using connectedness and 2-connectedness analysis provides a unique viewpoint for understanding disease affected brain networks.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Han
- Department of National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Beijing Institute of Geriatrics, Beijing, 100053, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| |
Collapse
|
6
|
A Comparative Study of Functional Connectivity Measures for Brain Network Analysis in the Context of AD Detection with EEG. ENTROPY 2021; 23:e23111553. [PMID: 34828251 PMCID: PMC8623641 DOI: 10.3390/e23111553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
This work addresses brain network analysis considering different clinical severity stages of cognitive dysfunction, based on resting-state electroencephalography (EEG). We use a cohort acquired in real-life clinical conditions, which contains EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, and Alzheimer’s disease (AD) patients. We propose to exploit an epoch-based entropy measure to quantify the connectivity links in the networks. This entropy measure relies on a refined statistical modeling of EEG signals with Hidden Markov Models, which allow a better estimation of the spatiotemporal characteristics of EEG signals. We also propose to conduct a comparative study by considering three other measures largely used in the literature: phase lag index, coherence, and mutual information. We calculated such measures at different frequency bands and computed different local graph parameters considering different proportional threshold values for a binary network analysis. After applying a feature selection procedure to determine the most relevant features for classification performance with a linear Support Vector Machine algorithm, our study demonstrates the effectiveness of the statistical entropy measure for analyzing the brain network in patients with different stages of cognitive dysfunction.
Collapse
|
7
|
Amini M, Pedram MM, Moradi A, Ouchani M. Diagnosis of Alzheimer's Disease by Time-Dependent Power Spectrum Descriptors and Convolutional Neural Network Using EEG Signal. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5511922. [PMID: 33981355 PMCID: PMC8088352 DOI: 10.1155/2021/5511922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Using strategies that obtain biomarkers where early symptoms coincide, the early detection of Alzheimer's disease and its complications is essential. Electroencephalogram is a technology that allows thousands of neurons with equal spatial orientation of the duration of cerebral cortex electrical activity to be registered by postsynaptic potential. Therefore, in this paper, the time-dependent power spectrum descriptors are used to diagnose the electroencephalogram signal function from three groups: mild cognitive impairment, Alzheimer's disease, and healthy control test samples. The final feature used in three modes of traditional classification methods is recorded: k-nearest neighbors, support vector machine, linear discriminant analysis approaches, and documented results. Finally, for Alzheimer's disease patient classification, the convolutional neural network architecture is presented. The results are indicated using output assessment. For the convolutional neural network approach, the accurate meaning of accuracy is 82.3%. 85% of mild cognitive impairment cases are accurately detected in-depth, but 89.1% of the Alzheimer's disease and 75% of the healthy population are correctly diagnosed. The presented convolutional neural network outperforms other approaches because performance and the k-nearest neighbors' approach is the next target. The linear discriminant analysis and support vector machine were at the low area under the curve values.
Collapse
Affiliation(s)
- Morteza Amini
- Department of Cognitive Modeling, Institute for Cognitive Science Studies, Shahid Beheshti University, Tehran, Iran
| | - Mir Mohsen Pedram
- Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
- Department of Cognitive Modeling, Institute for Cognitive Science Studies, Tehran, Iran
| | - AliReza Moradi
- Department of Clinical Psychology, Faculty of Psychology and Educational Science, Kharazmi University, Tehran, Iran
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Mahshad Ouchani
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Yang W, Pilozzi A, Huang X. An Overview of ICA/BSS-Based Application to Alzheimer's Brain Signal Processing. Biomedicines 2021; 9:386. [PMID: 33917280 PMCID: PMC8067382 DOI: 10.3390/biomedicines9040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is by far the most common cause of dementia associated with aging. Early and accurate diagnosis of AD and ability to track progression of the disease is increasingly important as potential disease-modifying therapies move through clinical trials. With the advent of biomedical techniques, such as computerized tomography (CT), electroencephalography (EEG), magnetoencephalography (MEG), positron emission tomography (PET), magnetic resonance imaging (MRI), and functional magnetic resonance imaging (fMRI), large amounts of data from Alzheimer's patients have been acquired and processed from which AD-related information or "signals" can be assessed for AD diagnosis. It remains unknown how best to mine complex information from these brain signals to aid in early diagnosis of AD. An increasingly popular technique for processing brain signals is independent component analysis or blind source separation (ICA/BSS) that separates blindly observed signals into original signals that are as independent as possible. This overview focuses on ICA/BSS-based applications to AD brain signal processing.
Collapse
Affiliation(s)
- Wenlu Yang
- Department of Electrical Engineering, Information Engineering College, Shanghai Maritime University, Shanghai 200135, China;
| | - Alexander Pilozzi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Xudong Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| |
Collapse
|
9
|
Tzimourta KD, Christou V, Tzallas AT, Giannakeas N, Astrakas LG, Angelidis P, Tsalikakis D, Tsipouras MG. Machine Learning Algorithms and Statistical Approaches for Alzheimer's Disease Analysis Based on Resting-State EEG Recordings: A Systematic Review. Int J Neural Syst 2021; 31:2130002. [PMID: 33588710 DOI: 10.1142/s0129065721300023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder and the most common type of dementia with a great prevalence in western countries. The diagnosis of AD and its progression is performed through a variety of clinical procedures including neuropsychological and physical examination, Electroencephalographic (EEG) recording, brain imaging and blood analysis. During the last decades, analysis of the electrophysiological dynamics in AD patients has gained great research interest, as an alternative and cost-effective approach. This paper summarizes recent publications focusing on (a) AD detection and (b) the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State Examination (MMSE) score. A total of 49 experimental studies published from 2009 until 2020, which apply machine learning algorithms on resting state EEG recordings from AD patients, are reviewed. Results of each experimental study are presented and compared. The majority of the studies focus on AD detection incorporating Support Vector Machines, while deep learning techniques have not yet been applied on large EEG datasets. Promising conclusions for future studies are presented.
Collapse
Affiliation(s)
- Katerina D Tzimourta
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani, GR50100, Greece.,Department of Medical Physics, Medical School, University of Ioannina, Ioannina GR45110, Greece
| | - Vasileios Christou
- Q Base R&D, Science & Technology Park of Epirus, University of Ioannina Campus, Ioannina GR45110, Greece.,Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Alexandros T Tzallas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta GR47100, Greece
| | - Loukas G Astrakas
- Department of Medical Physics, Medical School, University of Ioannina, Ioannina GR45110, Greece
| | - Pantelis Angelidis
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| | - Dimitrios Tsalikakis
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| | - Markos G Tsipouras
- Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani GR50100, Greece
| |
Collapse
|
10
|
Amezquita-Sanchez JP, Mammone N, Morabito FC, Adeli H. A New dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms. Clin Neurol Neurosurg 2020; 201:106446. [PMID: 33383465 DOI: 10.1016/j.clineuro.2020.106446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023]
Abstract
A new EEG-based methodology is presented for differential diagnosis of the Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and healthy subjects employing the discrete wavelet transform (DWT), dispersion entropy index (DEI), a recently-proposed nonlinear measurement, and a fuzzy logic-based classification algorithm. The effectiveness and usefulness of the proposed methodology are evaluated by employing a database of measured EEG data acquired from 135 subjects, 45 MCI, 45 AD and 45 healthy subjects. The proposed methodology differentiates MCI and AD patients from HC subjects with an accuracy of 82.6-86.9%, sensitivity of 91 %, and specificity of 87 %.
Collapse
Affiliation(s)
- Juan P Amezquita-Sanchez
- Autonomous University of Queretaro (UAQ), Faculty of Engineering, Departments Biomedical and Electromechanical, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, C. P. 76807, San Juan del Río, Qro., Mexico
| | - Nadia Mammone
- Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy
| | - Francesco C Morabito
- Department DICEAM of the Mediterranean University of Reggio Calabria, 89060, Reggio Calabria, Italy
| | - Hojjat Adeli
- Departments of Biomedical Informatics and Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43220, USA.
| |
Collapse
|
11
|
Deterministic characteristics of spontaneous activity detected by multi-fractal analysis in a spiking neural network with long-tailed distributions of synaptic weights. Cogn Neurodyn 2020; 14:829-836. [PMID: 33101534 DOI: 10.1007/s11571-020-09605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022] Open
Abstract
Cortical neural networks maintain autonomous electrical activity called spontaneous activity that represents the brain's dynamic internal state even in the absence of sensory stimuli. The spatio-temporal complexity of spontaneous activity is strongly related to perceptual, learning, and cognitive brain functions; multi-fractal analysis can be utilized to evaluate the complexity of spontaneous activity. Recent studies have shown that the deterministic dynamic behavior of spontaneous activity especially reflects the topological neural network characteristics and changes of neural network structures. However, it remains unclear whether multi-fractal analysis, recently widely utilized for neural activity, is effective for detecting the complexity of the deterministic dynamic process. To verify this point, we focused on the log-normal distribution of excitatory postsynaptic potentials (EPSPs) to evaluate the multi-fractality of spontaneous activity in a spiking neural network with a log-normal distribution of EPSPs. We found that the spiking activities exhibited multi-fractal characteristics. Moreover, to investigate the presence of a deterministic process in the spiking activity, we conducted a surrogate data analysis against the time-series of spiking activity. The results showed that the spontaneous spiking activity included the deterministic dynamic behavior. Overall, the combination of multi-fractal analysis and surrogate data analysis can detect deterministic complex neural activity. The multi-fractal analysis of neural activity used in this study could be widely utilized for brain modeling and evaluation methods for signals obtained by neuroimaging modalities.
Collapse
|
12
|
Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, Ma Y, Li H, Zhang F, Wu Z, Yao E, Guo X. Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s Disease Process. Int J Neural Syst 2020; 30:2050032. [DOI: 10.1142/s012906572050032x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical tool for diagnosing patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary disease classification models. The dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine (SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for 2D-CNN, 3D-CNN and 3D-CNN-SVM were [Formula: see text]%, [Formula: see text]% and [Formula: see text]% respectively. The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary classification. Our study indicated that ‘NC versus MCI’ showed accuracy, sensitivity and specificity of 98.90%, 98.90% and 98.80%; ‘NC versus AD’ showed accuracy, sensitivity and specificity of 99.10%, 99.80% and 98.40%; and ‘MCI versus AD’ showed accuracy, sensitivity and specificity of 89.40%, 86.70% and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to be efficient without having to manually perform any prior feature extraction and is totally independent of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety, noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an effective screening option for AD in the general population. This study holds value in distinguishing AD and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.
Collapse
Affiliation(s)
- Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Hao Tang
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Andrew Mecum
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Mohamed Kamal Mesregah
- Department of Orthopaedics and Neurosurgery, Keck Medical Center of USC, Los Angeles, CA, USA
| | - Yuan Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Haibin Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Feng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Zhiyuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| | - Erlin Yao
- School of Computer Science and Technology, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
13
|
Qin Y, Zhang N, Chen Y, Zuo X, Jiang S, Zhao X, Dong L, Li J, Zhang T, Yao D, Luo C. Rhythmic Network Modulation to Thalamocortical Couplings in Epilepsy. Int J Neural Syst 2020; 30:2050014. [PMID: 32308081 DOI: 10.1142/s0129065720500148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thalamus interacts with cortical areas, generating oscillations characterized by their rhythm and levels of synchrony. However, little is known of what function the rhythmic dynamic may serve in thalamocortical couplings. This work introduced a general approach to investigate the modulatory contribution of rhythmic scalp network to the thalamo-frontal couplings in juvenile myoclonic epilepsy (JME) and frontal lobe epilepsy (FLE). Here, time-varying rhythmic network was constructed using the adapted directed transfer function between EEG electrodes, and then was applied as a modulator in fMRI-based thalamocortical functional couplings. Furthermore, the relationship between corticocortical connectivity and rhythm-dependent thalamocortical coupling was examined. The results revealed thalamocortical couplings modulated by EEG scalp network have frequency-dependent characteristics. Increased thalamus- sensorimotor network (SMN) and thalamus-default mode network (DMN) couplings in JME were strongly modulated by alpha band. These thalamus-SMN couplings demonstrated enhanced association with SMN-related corticocortical connectivity. In addition, altered theta-dependent and beta-dependent thalamus-frontoparietal network (FPN) couplings were found in FLE. The reduced theta-dependent thalamus-FPN couplings were associated with the decreased FPN-related corticocortical connectivity. This study proposed interactive links between the rhythmic modulation and thalamocortical coupling. The crucial role of SMN and FPN in subcortical-cortical circuit may have implications for intervention in generalized and focal epilepsy.
Collapse
Affiliation(s)
- Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Nan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xiaole Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Tao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
14
|
Nobukawa S, Yamanishi T, Kasakawa S, Nishimura H, Kikuchi M, Takahashi T. Classification Methods Based on Complexity and Synchronization of Electroencephalography Signals in Alzheimer's Disease. Front Psychiatry 2020; 11:255. [PMID: 32317994 PMCID: PMC7154080 DOI: 10.3389/fpsyt.2020.00255] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Electroencephalography (EEG) has long been studied as a potential diagnostic method for Alzheimer's disease (AD). The pathological progression of AD leads to cortical disconnection. These disconnections may manifest as functional connectivity alterations, measured by the degree of synchronization between different brain regions, and alterations in complex behaviors produced by the interaction among wide-spread brain regions. Recently, machine learning methods, such as clustering algorithms and classification methods, have been adopted to detect disease-related changes in functional connectivity and classify the features of these changes. Although complexity of EEG signals can also reflect AD-related changes, few machine learning studies have focused on the changes in complexity. Therefore, in this study, we compared the ability of EEG signals to detect characteristics of AD using different machine learning approaches one focused on functional connectivity and the other focused on signal complexity. We examined functional connectivity, estimated by phase lag index (PLI) in EEG signals in healthy older participants [healthy control (HC)] and patients with AD. We estimated signal complexity using multi-scale entropy. Utilizing a support vector machine, we compared the identification accuracy of AD based on functional connectivity at each frequency band and complexity component. Additionally, we evaluated the relationship between synchronization and complexity. The identification accuracy of functional connectivity of the alpha, beta, and gamma bands was significantly high (AUC 1.0), and the identification accuracy of complexity was sufficiently high (AUC 0.81). Moreover, the relationship between functional connectivity and complexity exhibited various temporal-scale-and-regional-specific dependency in both HC participants and patients with AD. In conclusion, the combination of functional connectivity and complexity might reflect complex pathological process of AD. Applying a combination of both machine learning methods to neurophysiological data may provide a novel understanding of the neural network processes in both healthy brains and pathological conditions.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
| | - Teruya Yamanishi
- AI & IoT Center, Department of Management Information Science, Fukui University of Technology, Fukui, Japan
| | - Shinya Kasakawa
- AI & IoT Center, Department of Management Information Science, Fukui University of Technology, Fukui, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry & Behavioral Science, Kanazawa University, Ishikawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
| |
Collapse
|
15
|
Uysal G, Ozturk M. Hippocampal atrophy based Alzheimer's disease diagnosis via machine learning methods. J Neurosci Methods 2020; 337:108669. [PMID: 32126274 DOI: 10.1016/j.jneumeth.2020.108669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease is the most common form of dementia and is a serious health problem. The disease is expected to increase further in the upcoming years with the increase of the elderly population. Developing new treatments and diagnostic methods is getting more important. In this study, we focused on the early diagnosis of dementia in Alzheimer's disease via analysis of neuroimages. We analyzed the data diagnosed by the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. The analyzed data were T1-weighted magnetic resonance images of 159 patients with Alzheimer's disease, 217 patients with mild cognitive impairment and 109 cognitively healthy older people. In this study, we propose that the volumetric reduction in the hippocampus is the most important indicator of Alzheimer's disease. There is not much research about the relationship between the volumetric reduction in the hippocampus and Alzheimer's disease. This volume information was calculated through semi-automatic segmentation software ITK-SNAP and a data set was created based on age, gender, diagnosis, and right and left hippocampal volume values. The diagnosis via hippocampal volume information was made by using machine learning techniques. By using this approach, we conclude that brain MRIs can be used to distinguish the patients with Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI) and Cognitive Normal (CN) from each other; while most of the studies were only able to distinguish AD from CN. Our results have revealed that our approach improves the performance of the computer-aided diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Gokce Uysal
- Department of Biomedical Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Ozturk
- Department of Electrical and Electronics Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| |
Collapse
|
16
|
Liu G, Zhou W, Geng M. Automatic Seizure Detection Based on S-Transform and Deep Convolutional Neural Network. Int J Neural Syst 2019; 30:1950024. [DOI: 10.1142/s0129065719500242] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Automatic seizure detection is significant for the diagnosis of epilepsy and reducing the massive workload of reviewing continuous EEGs. In this work, a novel approach, combining Stockwell transform (S-transform) with deep Convolutional Neural Networks (CNN), is proposed to detect seizure onsets in long-term intracranial EEG recordings. Primarily, raw EEG data is filtered with wavelet decomposition. Then, S-transform is used to obtain a proper time-frequency representation of each EEG segment. After that, a 15-layer deep CNN using dropout and batch normalization serves as a robust feature extractor and classifier. Finally, smoothing and collar technique are applied to the outputs of CNN to improve the detection accuracy and reduce the false detection rate (FDR). The segment-based and event-based evaluation assessments and receiver operating characteristic (ROC) curves are employed for the performance evaluation on a public EEG database containing 21 patients. A segment-based sensitivity of 97.01% and a specificity of 98.12% are yielded. For the event-based assessment, this method achieves a sensitivity of 95.45% with an FDR of 0.36/h.
Collapse
Affiliation(s)
- Guoyang Liu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Minxing Geng
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
- Shenzhen Institute of Shandong University, Shenzhen 518057, P. R. China
| |
Collapse
|
17
|
Nobukawa S, Nishimura H, Yamanishi T. Temporal-specific complexity of spiking patterns in spontaneous activity induced by a dual complex network structure. Sci Rep 2019; 9:12749. [PMID: 31484990 PMCID: PMC6726653 DOI: 10.1038/s41598-019-49286-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/22/2019] [Indexed: 11/08/2022] Open
Abstract
Temporal fluctuation of neural activity in the brain has an important function in optimal information processing. Spontaneous activity is a source of such fluctuation. The distribution of excitatory postsynaptic potentials (EPSPs) between cortical pyramidal neurons can follow a log-normal distribution. Recent studies have shown that networks connected by weak synapses exhibit characteristics of a random network, whereas networks connected by strong synapses have small-world characteristics of small path lengths and large cluster coefficients. To investigate the relationship between temporal complexity spontaneous activity and structural network duality in synaptic connections, we executed a simulation study using the leaky integrate-and-fire spiking neural network with log-normal synaptic weight distribution for the EPSPs and duality of synaptic connectivity, depending on synaptic weight. We conducted multiscale entropy analysis of the temporal spiking activity. Our simulation demonstrated that, when strong synaptic connections approach a small-world network, specific spiking patterns arise during irregular spatio-temporal spiking activity, and the complexity at the large temporal scale (i.e., slow frequency) is enhanced. Moreover, we confirmed through a surrogate data analysis that slow temporal dynamics reflect a deterministic process in the spiking neural networks. This modelling approach may improve the understanding of the spatio-temporal complex neural activity in the brain.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan.
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, 7-1-28 Chuo-ku, Kobe, Hyogo, 650-8588, Japan
| | - Teruya Yamanishi
- AI & IoT Center, Department of Management and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui, 910-8505, Japan
| |
Collapse
|
18
|
Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T. Atypical temporal-scale-specific fractal changes in Alzheimer's disease EEG and their relevance to cognitive decline. Cogn Neurodyn 2018; 13:1-11. [PMID: 30728867 PMCID: PMC6339858 DOI: 10.1007/s11571-018-9509-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/20/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nonlinear analytic methods for electroencephalography have clarified the reduced complexity of spatiotemporal dynamics in brain activity observed in Alzheimer’s disease (AD). However, there are far fewer studies exploring temporal scale dependent fractal properties in AD, despite the importance of studying the dynamics of brain activity within physiologically relevant frequency ranges. Higuchi’s fractal dimension is a widely used index for evaluating fractality in brain activity, but temporal-scale-specific characteristics are lost due to its requirement of averaging over the entire range of temporal scales. In this study, we adapted Higuchi’s fractal algorithm into a method for investigating temporal-scale-specific fractal properties. We then compared the values of the temporal-scale-specific fractal dimension between healthy control (HC) and AD patient groups. Our data indicate that relative to the HC group, the AD group demonstrated reduced fractality at both slow and fast temporal scales. Moreover, we confirmed that the fractality at fast temporal scales correlates with cognitive decline. These properties might serve as a basis for a useful approach to characterizing temporal neural dynamics in AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2–17–1 Tsudanuma, Narashino, Chiba 275–0016 Japan
| | - Teruya Yamanishi
- Department of Management Information Science, Fukui University of Technology, 3–6–1 Gakuen, Fukui, Fukui 910–8505 Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, 7–1–28 Chuo-ku, Kobe, Hyogo 650–8588 Japan
| | - Yuji Wada
- Department of Neuropsychiatry, University of Fukui, 23–3 Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, 910–1193 Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, 13–1 Takaramachi, Kanazawa, Ishikawa 920–8640 Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, University of Fukui, 23–3 Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, 910–1193 Japan
- Research Center for Child Mental Development, Kanazawa University, 13–1 Takaramachi, Kanazawa, Ishikawa 920–8640 Japan
| |
Collapse
|
19
|
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Int J Neural Syst 2018; 28:1850022. [DOI: 10.1142/s0129065718500223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.
Collapse
Affiliation(s)
- Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Spain
| | - Xiaoyi Jiang
- Department of Computer Science, University of Munster, Germany
| | - Antonio Carrillo
- Department of Computer Architecture and Computer Technology, University of Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, CITIC-UGR, University of Granada, Spain
| |
Collapse
|
20
|
Fang C, Li C, Cabrerizo M, Barreto A, Andrian J, Rishe N, Loewenstein D, Duara R, Adjouadi M. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer’s Disease. Int J Neural Syst 2018; 28:1850017. [DOI: 10.1142/s012906571850017x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer’s disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
Collapse
Affiliation(s)
- Chen Fang
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Chunfei Li
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Armando Barreto
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Jean Andrian
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - Naphtali Rishe
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
| | - David Loewenstein
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease & Memory Disorders, Mount Sinai Medical Center Miami Beach, Florida 33140, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education (CATE), Florida International University, 10555 W Flagler St., Miami, Florida 33174, USA
- Florida Alzheimer’s Disease Research Center (ADRC), University of Florida, Gainesville, Florida 32610, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33174, USA
| |
Collapse
|
21
|
Houmani N, Vialatte F, Gallego-Jutglà E, Dreyfus G, Nguyen-Michel VH, Mariani J, Kinugawa K. Diagnosis of Alzheimer's disease with Electroencephalography in a differential framework. PLoS One 2018; 13:e0193607. [PMID: 29558517 PMCID: PMC5860733 DOI: 10.1371/journal.pone.0193607] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
This study addresses the problem of Alzheimer’s disease (AD) diagnosis with Electroencephalography (EEG). The use of EEG as a tool for AD diagnosis has been widely studied by comparing EEG signals of AD patients only to those of healthy subjects. By contrast, we perform automated EEG diagnosis in a differential diagnosis context using a new database, acquired in clinical conditions, which contains EEG data of 169 patients: subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, possible Alzheimer’s disease (AD) patients, and patients with other pathologies. We show that two EEG features, namely epoch-based entropy (a measure of signal complexity) and bump modeling (a measure of synchrony) are sufficient for efficient discrimination between these groups. We studied the performance of our methodology for the automatic discrimination of possible AD patients from SCI patients and from patients with MCI or other pathologies. A classification accuracy of 91.6% (specificity = 100%, sensitivity = 87.8%) was obtained when discriminating SCI patients from possible AD patients and 81.8% to 88.8% accuracy was obtained for the 3-class classification of SCI, possible AD and other patients.
Collapse
Affiliation(s)
- Nesma Houmani
- SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier EVRY, France
- * E-mail:
| | - François Vialatte
- UMR CNRS 8249 Brain Plasticity Laboratory, Paris, France
- ESPCI Paris, PSL Research University, Paris, France
| | - Esteve Gallego-Jutglà
- Data and Signal Processing Research Group, U Science Tech, University of Vic–Central University of Catalonia, Vic, Catalonia, Spain
| | | | - Vi-Huong Nguyen-Michel
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
| | - Jean Mariani
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing, Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing, Paris, France
| | - Kiyoka Kinugawa
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing, Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
22
|
Mirzaei G, Adeli A, Adeli H. Imaging and machine learning techniques for diagnosis of Alzheimer's disease. Rev Neurosci 2018; 27:857-870. [PMID: 27518905 DOI: 10.1515/revneuro-2016-0029] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/19/2016] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.
Collapse
|
23
|
Ibrahim S, Djemal R, Alsuwailem A. Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Yoshimoto S, Araki T, Uemura T, Nezu T, Kondo M, Sasai K, Iwase M, Satake H, Yoshida A, Kikuchi M, Sekitani T. Wireless EEG patch sensor on forehead using on-demand stretchable electrode sheet and electrode-tissue impedance scanner. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:6286-6289. [PMID: 28269686 DOI: 10.1109/embc.2016.7592165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A wireless electroencephalogram (EEG) sensor using a stretchable electrode sheet and electrode-tissue impedance measurement module is presented herein. The sensor can be attached to the forehead using biocompatible gel with the electrode sheet. The sensor is compactly designed for 3 cm × 9 cm × 6 mm with weight of 12 g. Impedance scanning circuit is also proposed to evaluate the skin surface condition before EEG measurements. We developed the impedance scanning board for 3 cm × 5 cm × 3 mm, with weight of 5.6 g. Results show that the proposed system demonstrates a promising performance in diagnosing the Alzheimer's disease using frequency domain analysis.
Collapse
|
25
|
Sekitani T, Yoshimoto S, Araki T, Uemura T. 12-2: Invited Paper
: A Sheet-type Wireless electroencephalogram (EEG) Sensor System using Flexible and Stretchable Electronics. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/sdtp.11594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tsuyoshi Sekitani
- Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Osaka 567-0047 Japan
| | - Shusuke Yoshimoto
- Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Osaka 567-0047 Japan
| | - Teppei Araki
- Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Osaka 567-0047 Japan
| | - Takafumi Uemura
- Institute of Scientific and Industrial Research; Osaka University; Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
26
|
Engels MMA, van der Flier WM, Stam CJ, Hillebrand A, Scheltens P, van Straaten ECW. Alzheimer's disease: The state of the art in resting-state magnetoencephalography. Clin Neurophysiol 2017. [PMID: 28622527 DOI: 10.1016/j.clinph.2017.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is accompanied by functional brain changes that can be detected in imaging studies, including electromagnetic activity recorded with magnetoencephalography (MEG). Here, we systematically review the studies that have examined resting-state MEG changes in AD and identify areas that lack scientific or clinical progress. Three levels of MEG analysis will be covered: (i) single-channel signal analysis, (ii) pairwise analyses over time series, which includes the study of interdependencies between two time series and (iii) global network analyses. We discuss the findings in the light of other functional modalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Overall, single-channel MEG results show consistent changes in AD that are in line with EEG studies, but the full potential of the high spatial resolution of MEG and advanced functional connectivity and network analysis has yet to be fully exploited. Adding these features to the current knowledge will potentially aid in uncovering organizational patterns of brain function in AD and thereby aid the understanding of neuronal mechanisms leading to cognitive deficits.
Collapse
Affiliation(s)
- M M A Engels
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - W M van der Flier
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Ph Scheltens
- Alzheimer Centrum and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - E C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Mammone N, Bonanno L, Salvo SD, Marino S, Bramanti P, Bramanti A, Morabito FC. Permutation Disalignment Index as an Indirect, EEG-Based, Measure of Brain Connectivity in MCI and AD Patients. Int J Neural Syst 2017; 27:1750020. [DOI: 10.1142/s0129065717500204] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective: In this work, we introduce Permutation Disalignment Index (PDI) as a novel nonlinear, amplitude independent, robust to noise metric of coupling strength between time series, with the aim of applying it to electroencephalographic (EEG) signals recorded longitudinally from Alzheimer’s Disease (AD) and Mild Cognitive Impaired (MCI) patients. The goal is to indirectly estimate the connectivity between the cortical areas, through the quantification of the coupling strength between the corresponding EEG signals, in order to find a possible matching with the disease’s progression. Method: PDI is first defined and tested on simulated interacting dynamic systems. PDI is then applied to real EEG recorded from 8 amnestic MCI subjects and 7 AD patients, who were longitudinally evaluated at time [Formula: see text]0 and 3 months later (time [Formula: see text]1). At time [Formula: see text]1, 5 out of 8 MCI patients were still diagnosed MCI (stable MCI) whereas the remaining 3 exhibited a conversion from MCI to AD (prodromal AD). PDI was compared to the Spectral Coherence and the Dissimilarity Index. Results: Limited to the size of the analyzed dataset, both Coherence and PDI resulted sensitive to the conversion from MCI to AD, even though only PDI resulted specific. In particular, the intrasubject variability study showed that the three patients who converted to AD exhibited a significantly ([Formula: see text]) increased PDI (reduced coupling strength) in delta and theta bands. As regards Coherence, even though it significantly decreased in the three converted patients, in delta and theta bands, such a behavior was also detectable in one stable MCI patient, in delta band, thus making Coherence not specific. From the Dissimilarity Index point of view, the converted MCI showed no peculiar behavior. Conclusions: PDI significantly increased, in delta and theta bands, specifically in the MCI subjects who converted to AD. The increase of PDI reflects a reduced coupling strength among the brain areas, which is consistent with the expected connectivity reduction associated to AD progression.
Collapse
Affiliation(s)
- Nadia Mammone
- IRCCS Centro Neurolesi Bonino-Pulejo, SS. 113, Via Palermo c.da Casazza, 98124 Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, SS. 113, Via Palermo c.da Casazza, 98124 Messina, Italy
| | - Simona De Salvo
- IRCCS Centro Neurolesi Bonino-Pulejo, SS. 113, Via Palermo c.da Casazza, 98124 Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, SS. 113, Via Palermo c.da Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino-Pulejo, SS. 113, Via Palermo c.da Casazza, 98124 Messina, Italy
| | - Alessia Bramanti
- Institute of Applied Sciences and Intelligent Systems Eduardo Caianiello (ISASI), National Research Council (CNR), Messina, Italy
| | - Francesco C. Morabito
- DICEAM Department of the Mediterranea University of Reggio Calabria, Via Graziella Feo di Vito, 89060 Reggio Calabria, Italy
| |
Collapse
|
28
|
Abstract
This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.
Collapse
Affiliation(s)
- Jon delEtoile
- 1 Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hojjat Adeli
- 2 Departments of Biomedical Engineering, Biomedical Informatics, Neurological Surgery, and Neuroscience, and Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Cassani R, Falk TH, Fraga FJ, Cecchi M, Moore DK, Anghinah R. Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Del Percio C, Drinkenburg W, Lopez S, Infarinato F, Bastlund JF, Laursen B, Pedersen JT, Christensen DZ, Forloni G, Frasca A, Noè FM, Bentivoglio M, Fabene PF, Bertini G, Colavito V, Kelley J, Dix S, Richardson JC, Babiloni C. On-going electroencephalographic rhythms related to cortical arousal in wild-type mice: the effect of aging. Neurobiol Aging 2017; 49:20-30. [DOI: 10.1016/j.neurobiolaging.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 01/25/2023]
|
31
|
Morabito FC, Campolo M, Mammone N, Versaci M, Franceschetti S, Tagliavini F, Sofia V, Fatuzzo D, Gambardella A, Labate A, Mumoli L, Tripodi GG, Gasparini S, Cianci V, Sueri C, Ferlazzo E, Aguglia U. Deep Learning Representation from Electroencephalography of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation from Rapidly Progressive Dementia. Int J Neural Syst 2016; 27:1650039. [PMID: 27440465 DOI: 10.1142/s0129065716500398] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt–Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included. The dimensionality of the feature space is reduced through a multilayer processing system based on the recently emerged deep learning (DL) concept. The DL processor includes a stacked auto-encoder, trained by unsupervised learning techniques, and a classifier whose parameters are determined in a supervised way by associating the known category labels to the reduced vector of high-level features generated by the previous processing blocks. The supervised learning step is carried out by using either support vector machines (SVM) or multilayer neural networks (MLP-NN). A subset of EEG from patients suffering from Alzheimer’s Disease (AD) and healthy controls (HC) is considered for differentiating CJD patients. When fine-tuning the parameters of the global processing system by a supervised learning procedure, the proposed system is able to achieve an average accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89% in differentiating CJD from RPD. Similar results are obtained for CJD versus AD and CJD versus HC.
Collapse
Affiliation(s)
| | | | - Nadia Mammone
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, Messina, Italy
| | | | | | | | - Vito Sofia
- Institute of Neurology, University of Catania, Italy
| | | | | | | | | | | | - Sara Gasparini
- Magna Græcia University, Catanzaro, Italy
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Chiara Sueri
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Magna Græcia University, Catanzaro, Italy
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Magna Græcia University, Catanzaro, Italy
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| |
Collapse
|
32
|
Babiloni C, Del Percio C, Caroli A, Salvatore E, Nicolai E, Marzano N, Lizio R, Cavedo E, Landau S, Chen K, Jagust W, Reiman E, Tedeschi G, Montella P, De Stefano M, Gesualdo L, Frisoni GB, Soricelli A. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study. Neurobiol Aging 2016; 48:122-134. [DOI: 10.1016/j.neurobiolaging.2016.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
|
33
|
Tomasevic NM, Neskovic AM, Neskovic NJ. Correlated EEG Signals Simulation Based on Artificial Neural Networks. Int J Neural Syst 2016; 27:1750008. [PMID: 27873552 DOI: 10.1142/s0129065717500083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years, simulation of the human electroencephalogram (EEG) data found its important role in medical domain and neuropsychology. In this paper, a novel approach to simulation of two cross-correlated EEG signals is proposed. The proposed method is based on the principles of artificial neural networks (ANN). Contrary to the existing EEG data simulators, the ANN-based approach was leveraged solely on the experimentally acquired EEG data. More precisely, measured EEG data were utilized to optimize the simulator which consisted of two ANN models (each model responsible for generation of one EEG sequence). In order to acquire the EEG recordings, the measurement campaign was carried out on a healthy awake adult having no cognitive, physical or mental load. For the evaluation of the proposed approach, comprehensive quantitative and qualitative statistical analysis was performed considering probability distribution, correlation properties and spectral characteristics of generated EEG processes. The obtained results clearly indicated the satisfactory agreement with the measurement data.
Collapse
Affiliation(s)
- Nikola M Tomasevic
- 1 University of Belgrade, The Mihajlo Pupin Institute, Volgina 15, 11060 Belgrade, Serbia
| | - Aleksandar M Neskovic
- 2 School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, P. O. Box 3554, 11120 Belgrade, Serbia
| | - Natasa J Neskovic
- 2 School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, P. O. Box 3554, 11120 Belgrade, Serbia
| |
Collapse
|
34
|
Martinez-Murcia FJ, Górriz JM, Ramírez J, Ortiz A. A Structural Parametrization of the Brain Using Hidden Markov Models-Based Paths in Alzheimer’s Disease. Int J Neural Syst 2016; 26:1650024. [DOI: 10.1142/s0129065716500246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The usage of biomedical imaging in the diagnosis of dementia is increasingly widespread. A number of works explore the possibilities of computational techniques and algorithms in what is called computed aided diagnosis. Our work presents an automatic parametrization of the brain structure by means of a path generation algorithm based on hidden Markov models (HMMs). The path is traced using information of intensity and spatial orientation in each node, adapting to the structure of the brain. Each path is itself a useful way to characterize the distribution of the tissue inside the magnetic resonance imaging (MRI) image by, for example, extracting the intensity levels at each node or generating statistical information of the tissue distribution. Additionally, a further processing consisting of a modification of the grey level co-occurrence matrix (GLCM) can be used to characterize the textural changes that occur throughout the path, yielding more meaningful values that could be associated to Alzheimer’s disease (AD), as well as providing a significant feature reduction. This methodology achieves moderate performance, up to 80.3% of accuracy using a single path in differential diagnosis involving Alzheimer-affected subjects versus controls belonging to the Alzheimer’s disease neuroimaging initiative (ADNI).
Collapse
Affiliation(s)
| | - Juan M. Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Andres Ortiz
- Department of Communications Engineering, University of Malaga, Malaga, Spain
| |
Collapse
|
35
|
Khedher L, Illán IA, Górriz JM, Ramírez J, Brahim A, Meyer-Baese A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support. Int J Neural Syst 2016; 27:1650050. [PMID: 27776438 DOI: 10.1142/s0129065716500507] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer's disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer's disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.
Collapse
Affiliation(s)
- Laila Khedher
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Ignacio A Illán
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Juan M Górriz
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Javier Ramírez
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Abdelbasset Brahim
- 1 Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain
| | - Anke Meyer-Baese
- 2 Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
36
|
Michalopoulos K, Zervakis M, Deiber MP, Bourbakis N. Classification of EEG Single Trial Microstates Using Local Global Graphs and Discrete Hidden Markov Models. Int J Neural Syst 2016; 26:1650036. [DOI: 10.1142/s0129065716500362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a novel synergistic methodology for the spatio-temporal analysis of single Electroencephalogram (EEG) trials. This new methodology is based on the novel synergy of Local Global Graph (LG graph) to characterize define the structural features of the EEG topography as a global descriptor for robust comparison of dominant topographies (microstates) and Hidden Markov Models (HMM) to model the topographic sequence in a unique way. In particular, the LG graph descriptor defines similarity and distance measures that can be successfully used for the difficult comparison of the extracted LG graphs in the presence of noise. In addition, hidden states represent periods of stationary distribution of topographies that constitute the equivalent of the microstates in the model. The transitions between the different microstates and the formed syntactic patterns can reveal differences in the processing of the input stimulus between different pathologies. We train the HMM model to learn the transitions between the different microstates and express the syntactic patterns that appear in the single trials in a compact and efficient way. We applied this methodology in single trials consisting of normal subjects and patients with Progressive Mild Cognitive Impairment (PMCI) to discriminate these two groups. The classification results show that this approach is capable to efficiently discriminate between control and Progressive MCI single trials. Results indicate that HMMs provide physiologically meaningful results that can be used in the syntactic analysis of Event Related Potentials.
Collapse
Affiliation(s)
- Kostas Michalopoulos
- Center of Assistive Research Technologies, Wright State University, Dayton OH 45435, USA
| | | | - Marie-Pierre Deiber
- Faculty of Medicine, INSERM Unit 1039, La Tronche, France
- Biomarkers of Vulnerability Unit, Dep. of Psychiatry, University Hospitals, Geneva, Switzerland
| | - Nikolaos Bourbakis
- Center of Assistive Research Technologies, Wright State University, Dayton OH 45435, USA
| |
Collapse
|
37
|
Amezquita-Sanchez JP, Adeli A, Adeli H. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magnetoencephalography (MEG). Behav Brain Res 2016; 305:174-80. [DOI: 10.1016/j.bbr.2016.02.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
38
|
Yuan S, Zhou W, Wu Q, Zhang Y. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation. Int J Neural Syst 2016; 26:1650011. [DOI: 10.1142/s0129065716500118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
- Suzhou Institute of Shandong University, Suzhou 215123, P. R. China
| | - Weidong Zhou
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
- Suzhou Institute of Shandong University, Suzhou 215123, P. R. China
| | - Qi Wu
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
- Suzhou Institute of Shandong University, Suzhou 215123, P. R. China
| | - Yanli Zhang
- School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China
- Suzhou Institute of Shandong University, Suzhou 215123, P. R. China
| |
Collapse
|
39
|
Hong KS, Naseer N. Reduction of Delay in Detecting Initial Dips from Functional Near-Infrared Spectroscopy Signals Using Vector-Based Phase Analysis. Int J Neural Syst 2016; 26:1650012. [DOI: 10.1142/s012906571650012x] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we present a systematic method to reduce the time lag in detecting initial dips using a vector-based phase diagram and an autoregressive moving average with exogenous signals (ARMAX) model-based [Formula: see text]-step-ahead prediction algorithm. With functional near-infrared spectroscopy (fNIRS), signals related to mental arithmetic and right-hand clenching are acquired from the prefrontal and left primary motor cortices, respectively. The interrelationship between oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin and cerebral oxygen exchange are related to initial dips. Specifically, a threshold value from the resting state hemodynamics is incorporated, as a decision criterion, into the vector-based phase diagram to determine the occurrence of initial dips. To further reduce the time lag, a [Formula: see text]-step-ahead prediction method is applied to predict the occurrence of the dips. A combination of the threshold criterion and the prediction method resulted in the delay time of about 0.9[Formula: see text]s. The results demonstrate that rapid detection of initial dip is possible and therefore can be used for real-time brain–computer interfacing.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| | - Noman Naseer
- Department of Cogno-Mechatronics Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
40
|
Ortiz A, Munilla J, Górriz JM, Ramírez J. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease. Int J Neural Syst 2016; 26:1650025. [PMID: 27478060 DOI: 10.1142/s0129065716500258] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Computer Aided Diagnosis (CAD) constitutes an important tool for the early diagnosis of Alzheimer's Disease (AD), which, in turn, allows the application of treatments that can be simpler and more likely to be effective. This paper explores the construction of classification methods based on deep learning architectures applied on brain regions defined by the Automated Anatomical Labeling (AAL). Gray Matter (GM) images from each brain area have been split into 3D patches according to the regions defined by the AAL atlas and these patches are used to train different deep belief networks. An ensemble of deep belief networks is then composed where the final prediction is determined by a voting scheme. Two deep learning based structures and four different voting schemes are implemented and compared, giving as a result a potent classification architecture where discriminative features are computed in an unsupervised fashion. The resulting method has been evaluated using a large dataset from the Alzheimer's disease Neuroimaging Initiative (ADNI). Classification results assessed by cross-validation prove that the proposed method is not only valid for differentiate between controls (NC) and AD images, but it also provides good performances when tested for the more challenging case of classifying Mild Cognitive Impairment (MCI) Subjects. In particular, the classification architecture provides accuracy values up to 0.90 and AUC of 0.95 for NC/AD classification, 0.84 and AUC of 0.91 for stable MCI/AD classification and 0.83 and AUC of 0.95 for NC/MCI converters classification.
Collapse
Affiliation(s)
- Andrés Ortiz
- 1 Communications Engineering Department, University of Málaga, 29071/Málaga, Spain
| | - Jorge Munilla
- 1 Communications Engineering Department, University of Málaga, 29071/Málaga, Spain
| | - Juan M Górriz
- 2 Department of Signal Theory, Communications and Networking, University of Granada, 18060/Granada, Spain
| | - Javier Ramírez
- 2 Department of Signal Theory, Communications and Networking, University of Granada, 18060/Granada, Spain
| |
Collapse
|
41
|
Romero-Garcia R, Atienza M, Cantero JL. Different Scales of Cortical Organization are Selectively Targeted in the Progression to Alzheimer's Disease. Int J Neural Syst 2015; 26:1650003. [PMID: 26790483 DOI: 10.1142/s0129065716500039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that the topological organization of the cerebral cortex is altered in Alzheimer's disease (AD). However, it remains unknown whether different levels of the cortical hierarchy are homogeneously affected during disease progression, and which of these levels are mostly involved in the breakdown of metabolic (functional) connectivity. To fulfill these goals, we acquired structural magnetic resonance images (MRI) and positron emission tomography (PET) with the radiotracer 18F-fludeoxyglucose (FDG) in 29 healthy old (HO) adults, 29 amnestic mild cognitive impairment (aMCI) and 29 mild AD patients. Structural and metabolic connections were obtained from inter-regional correlations of cortical thickness and glucose consumption, respectively. Results showed that AD and HO groups differed at all levels of cortical organization (i.e. whole cortex, hemisphere, lobe and node), whereas differences among the three groups were only evident at the lobe and node levels. The correlation between structural and metabolic connectivity (F-S coupling) was also disturbed during AD progression, affecting to different connectivity scales: it decreased at the local level, revealing a progressive increase of metabolic connections in those local communities with fewer structural connections; whereas it increased at the global level, likely due to a parallel reduction of cortical thickness and glucose consumption between long-distance cortical regions. Collectively, these results reveal that different levels of cortical organization are selectively affected during the transition from normal aging to dementia, which could be helpful to track cortical dysfunctions in the progression to AD.
Collapse
Affiliation(s)
- Rafael Romero-Garcia
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, CIBERNED, Pablo de Olavide University, Seville, Spain
| | - Jose L. Cantero
- Laboratory of Functional Neuroscience, CIBERNED, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
42
|
Houmani N, Dreyfus G, Vialatte FB. Epoch-based Entropy for Early Screening of Alzheimer’s Disease. Int J Neural Syst 2015; 25:1550032. [DOI: 10.1142/s012906571550032x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer’s disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon’s entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.
Collapse
Affiliation(s)
- N. Houmani
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- SIGMA (SIGnal processing and MAchine learning) Laboratory, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - G. Dreyfus
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- SIGMA (SIGnal processing and MAchine learning) Laboratory, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - F. B. Vialatte
- ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Brain Plasticity Laboratory, CNRS UMR 8249, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| |
Collapse
|
43
|
Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task. SENSORS 2015; 15:29015-35. [PMID: 26593918 PMCID: PMC4701319 DOI: 10.3390/s151129015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/04/2015] [Indexed: 12/03/2022]
Abstract
We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
Collapse
|
44
|
Hirschauer TJ, Adeli H, Buford JA. Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network. J Med Syst 2015; 39:179. [PMID: 26420585 DOI: 10.1007/s10916-015-0353-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/18/2015] [Indexed: 01/01/2023]
Abstract
Early and accurate diagnosis of Parkinson's disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson's Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5% followed by the PNN (91.6%), k-NN (90.8%) and CT (90.2%). The EPNN exhibited an accuracy of 98.6% when classifying healthy control (HC) versus PD, higher than any previous studies.
Collapse
Affiliation(s)
- Thomas J Hirschauer
- Neuroscience Graduate Program and Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Hojjat Adeli
- Departments of Biomedical Engineering, Biomedical Informatics, Neurology, Neuroscience, Electrical and Computer Engineering, Civil, Environmental, and Geodetic Engineering, and Biophysics Graduate Program, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH, 43210, USA.
| | - John A Buford
- Physical Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Ave, Rm. 516E, Columbus, OH, 43210, USA.
| |
Collapse
|
45
|
Hulbert S, Adeli H. Spotting psychopaths using technology. Rev Neurosci 2015; 26:721-32. [PMID: 26408574 DOI: 10.1515/revneuro-2015-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/17/2015] [Indexed: 11/15/2022]
Abstract
For the past three and a half decades, the Psychopathy Checklist-Revised (PCL-R) and the self-report Psychopathic Personality Inventory-Revised (PPI-R) have been the standard measures for the diagnosis of psychopathy. Technological approaches can enhance these diagnostic methodologies. The purpose of this paper is to present a state-of-the-art review of various technological approaches for spotting psychopathy, such as electroencephalogram (EEG), magnetic resonance imaging (MRI), functional MRI (fMRI), transcranial magnetic stimulation (TMS), and other measures. Results of EEG event-related potential (ERP) experiments support the theory that impaired amygdala function may be responsible for abnormal fear processing in psychopathy, which can ultimately manifest as psychopathic traits, as outlined by the PCL-R or PPI-R. Imaging studies, in general, point to reduced fear processing capabilities in psychopathic individuals. While the human element, introduced through researcher/participant interactions, can be argued as unequivocally necessary for diagnosis, these purely objective technological approaches have proven to be useful in conjunction with the subjective interviewing and questionnaire methods for differentiating psychopaths from non-psychopaths. Furthermore, these technologies are more robust than behavioral measures, which have been shown to fail.
Collapse
|
46
|
MARTIS ROSHANJOY, TAN JENHONG, CHUA CHUAKUANG, LOON TOOCHEAH, YEO SHARONWANJIE, TONG LOUIS. EPILEPTIC EEG CLASSIFICATION USING NONLINEAR PARAMETERS ON DIFFERENT FREQUENCY BANDS. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epilepsy is a chronic neurological disorder with considerable incidence and affects the population everywhere in the world. It occurs due to recurrent unprovoked seizures which can be noninvasively diagnosed using electroencephalograms (EEGs) which are the neuronal electrical activity recorded on the scalp. The EEG signal is highly random, nonlinear, nonstationary and non-Gaussian in nature. The nonlinear features characterize the EEG more accurately than linear models. EEG comprsises of different activities like delta, theta, lower alpha, upper alpha, lower beta, upper beta and lower gamma which are correlated to the brain anatomy and its function. In the current study, the nonlinear features such as Hurst exponent (HE), Higuchi fractal dimension (HFD), largest Lyapunov exponent (LLE) and sample entropy (SE) are extracted on these individual activities to provide improved discrimination. The ranked features are classified using support vector machine (SVM) with different kernel functions, decision tree (DT) and k-nearest neighbor (KNN) to select the best classifier. It is observed that SVM with radial basis function (RBF) kernel provides highest accuracy of 98%, sensitivity and specificity of 99.5% and 100%, respectively using five features. The developed methodology is ready for epilepsy screening and can be deployed in many programmes.
Collapse
Affiliation(s)
- ROSHAN JOY MARTIS
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Electronics and Communication Engineering, St. Joseph Engineering College, Mangaluru, Karnataka, India 575028, India
| | - JEN HONG TAN
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - CHUA KUANG CHUA
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - TOO CHEAH LOON
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - SHARON WAN JIE YEO
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - LOUIS TONG
- Singapore National Eye Center, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Singapore Eye Research Institute, Singapore 168751, Singapore
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, 10 Medical Drive, Singapore 117597, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
47
|
Ortiz-Rosario A, Adeli H, Buford JA. Wavelet methodology to improve single unit isolation in primary motor cortex cells. J Neurosci Methods 2015; 246:106-18. [PMID: 25794461 DOI: 10.1016/j.jneumeth.2015.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 11/17/2022]
Abstract
The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best.
Collapse
Affiliation(s)
- Alexis Ortiz-Rosario
- Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States
| | - Hojjat Adeli
- Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Biomedical Informatics, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Electrical and Computer Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Department of Neuroscience, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States.
| | - John A Buford
- Department of Biomedical Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States; Physical Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University, 453 W 10th Avenue, Rm. 516E, Columbus, OH 43210, United States
| |
Collapse
|
48
|
Morabito FC, Campolo M, Labate D, Morabito G, Bonanno L, Bramanti A, de Salvo S, Marra A, Bramanti P. A Longitudinal EEG Study of Alzheimer's Disease Progression Based on A Complex Network Approach. Int J Neural Syst 2015; 25:1550005. [DOI: 10.1142/s0129065715500057] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A complex network approach is combined with time dynamics in order to conduct a space–time analysis applicable to longitudinal studies aimed to characterize the progression of Alzheimer's disease (AD) in individual patients. The network analysis reveals how patient-specific patterns are associated with disease progression, also capturing the widespread effect of local disruptions. This longitudinal study is carried out on resting electroence phalography (EEGs) of seven AD patients. The test is repeated after a three months' period. The proposed methodology allows to extract some averaged information and regularities on the patients' cohort and to quantify concisely the disease evolution. From the functional viewpoint, the progression of AD is shown to be characterized by a loss of connected areas here measured in terms of network parameters (characteristic path length, clustering coefficient, global efficiency, degree of connectivity and connectivity density). The differences found between baseline and at follow-up are statistically significant. Finally, an original topographic multiscale approach is proposed that yields additional results.
Collapse
Affiliation(s)
| | | | | | | | - Lilla Bonanno
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | | | | - Angela Marra
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | |
Collapse
|
49
|
Wang R, Wang J, Li S, Yu H, Deng B, Wei X. Multiple feature extraction and classification of electroencephalograph signal for Alzheimers' with spectrum and bispectrum. CHAOS (WOODBURY, N.Y.) 2015; 25:013110. [PMID: 25637921 DOI: 10.1063/1.4906038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Collapse
Affiliation(s)
- Ruofan Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Shunan Li
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Haitao Yu
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| | - Xile Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
| |
Collapse
|
50
|
Sharma P, Khan YU, Farooq O, Tripathi M, Adeli H. A Wavelet-Statistical Features Approach for Nonconvulsive Seizure Detection. Clin EEG Neurosci 2014; 45:274-284. [PMID: 24934269 DOI: 10.1177/1550059414535465] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/21/2014] [Indexed: 11/16/2022]
Abstract
The detection of nonconvulsive seizures (NCSz) is a challenge because of the lack of physical symptoms, which may delay the diagnosis of the disease. Many researchers have reported automatic detection of seizures. However, few investigators have concentrated on detection of NCSz. This article proposes a method for reliable detection of NCSz. The electroencephalography (EEG) signal is usually contaminated by various nonstationary noises. Signal denoising is an important preprocessing step in the analysis of such signals. In this study, a new wavelet-based denoising approach using cubical thresholding has been proposed to reduce noise from the EEG signal prior to analysis. Three statistical features were extracted from wavelet frequency bands, encompassing the frequency range of 0 to 8, 8 to 16, 16 to 32, and 0 to 32 Hz. Extracted features were used to train linear classifier to discriminate between normal and seizure EEGs. The performance of the method was tested on a database of nine patients with 24 seizures in 80 hours of EEG recording. All the seizures were successfully detected, and false positive rate was found to be 0.7 per hour.
Collapse
Affiliation(s)
- Priyanka Sharma
- Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Yusuf Uzzaman Khan
- Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Omar Farooq
- Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Hojjat Adeli
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|