1
|
Xiao S, Yang Z, Lin Z, Chen L, Liao W, Wang J, Gao C, Lu J, Song Y, Su S, Jiang G. Spontaneous Brain Activity Abnormalities in Patients With Temporal Lobe Epilepsy: A Meta-Analysis of 1474 Patients. J Magn Reson Imaging 2024. [PMID: 39215606 DOI: 10.1002/jmri.29568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE Meta-analysis. SUBJECTS Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE Stage 2.
Collapse
Affiliation(s)
- Shu Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zibin Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zitao Lin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Liqing Chen
- Department of Catheter Intervention, Maoming Maonan District People's Hospital, Maoming, China
| | - Weiming Liao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Cuihua Gao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianjun Lu
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yang Song
- Siemens Healthineers Ltd, Shanghai, China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Ma M, Li Y, Shao Y, Weng X. Effect of total sleep deprivation on effective EEG connectivity for young male in resting-state networks in different eye states. Front Neurosci 2023; 17:1204457. [PMID: 37928738 PMCID: PMC10620317 DOI: 10.3389/fnins.2023.1204457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Background Many studies have investigated the effect of total sleep deprivation (TSD) on resting-state functional networks, especially the default mode network (DMN) and sensorimotor network (SMN), using functional connectivity. While it is known that the activities of these networks differ based on eye state, it remains unclear how TSD affects them in different eye states. Therefore, we aimed to examine the effect of TSD on DMN and SMN in different eye states using effective functional connectivity via isolated effective coherence (iCoh) in exact low-resolution brain electromagnetic tomography (eLORETA). Methods Resting-state electroencephalogram (EEG) signals were collected from 24 male college students, and each participant completed a psychomotor vigilance task (PVT) while behavioral data were acquired. Each participant underwent 36-h TSD, and the data were acquired in two sleep-deprivation times (rested wakefulness, RW: 0 h; and TSD: 36 h) and two eye states (eyes closed, EC; and eyes open, EO). Changes in neural oscillations and effective connectivity were compared based on paired t-test. Results The behavioral results showed that PVT reaction time was significantly longer in TSD compared with that of RW. The EEG results showed that in the EO state, the activity of high-frequency bands in the DMN and SMN were enhanced compared to those of the EC state. Furthermore, when compared with the DMN and SMN of RW, in TSD, the activity of DMN was decreased, and SMN was increased. Moreover, the changed effective connectivity in the DMN and SMN after TSD was positively correlated with an increased PVT reaction time. In addition, the effective connectivity in the different network (EO-EC) of the SMN was reduced in the β band after TSD compared with that of RW. Conclusion These findings indicate that TSD impairs alertness and sensory information input in the SMN to a greater extent in an EO than in an EC state.
Collapse
Affiliation(s)
- Mengke Ma
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yutong Li
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Valeriano MG, Alegria R, Forlenza OV, Radanovic M. Discourse abilities in euthymic elderly patients with bipolar disorder: a preliminary study. Dement Neuropsychol 2023; 17:e20220067. [PMID: 37223836 PMCID: PMC10202327 DOI: 10.1590/1980-5764-dn-2022-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 05/25/2023] Open
Abstract
Cognitive impairment has been well described in euthymic patients with bipolar disorder (BD), as well as in elderly patients. Language disturbances are less studied, and several inconsistencies are reported in the literature. Most language studies focus on verbal fluency and semantic alterations, with a lack of studies addressing discursive abilities in BD. Objective The aim of this study was to evaluate discourse abilities in euthymic elderly individuals with BD. Methods We studied 19 euthymic elderly patients with BD and a control group of non-BD, which performed a cognitive assessment of attention, memory, executive functions, and visual abilities. All participants produced a description from the Cookie Theft Picture in oral and written modalities that was analyzed according to micro- and macrolinguistic aspects. Generalized linear models were performed to compare intergroup linguistic performance and to determine whether any cognitive domain was associated with linguistic outcomes. Results The BD group produced more cohesion errors in the oral and written modalities (p=0.016 and p=0.011, respectively) and fewer thematic units in the oral modality (p=0.027) than the control group. Conclusions BD patients presented minimal changes in the descriptive discourse task. The BD group produced more cohesion errors than the control group in the oral (p=0.016) and written discourse (p=0.011); also, the BD group produced fewer thematic units than controls in the oral discourse (p=0.027).
Collapse
Affiliation(s)
- Maria Gabriela Valeriano
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brazil
| | - Renné Alegria
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brazil
| | - Orestes Vicente Forlenza
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brazil
| | - Marcia Radanovic
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brazil
| |
Collapse
|
4
|
Wang H, Tian S, Yan R, Tang H, Shi J, Zhu R, Chen Y, Han Y, Chen Z, Zhou H, Zhao S, Yao Z, Lu Q. Convergent and divergent cognitive impairment of unipolar and bipolar depression: A magnetoencephalography resting-state study. J Affect Disord 2023; 321:8-15. [PMID: 36181913 DOI: 10.1016/j.jad.2022.09.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Unipolar depression (UD) and bipolar depression (BD) showed convergent and divergent cognitive impairments. Neural oscillations are linked to the foundational cognitive processes. We aimed to investigate the underpinning spectral neuronal power patterns by magnetoencephalography (MEG), which combinates high spatial and temporal resolution. We hypothesized that patients with UD and BD exhibit common and distinct patterns, which may contribute to their cognitive impairments. METHODS Group cognitive tests were performed. Eyes closed resting-state MEG data were collected from 61 UD, 55 BD, and 52 healthy controls (HC). Nonparametric cluster-based permutation tests were performed to deal with the multiple comparison problem on channel-frequency MEG data. Correlation analysis of cognitive dysfunction scores and MEG oscillation were conducted by Spearman or partial correlation analysis. RESULTS Wisconsin Card Sorting Test showed similar cognitive impairment in patients with UD and BD. Moreover, patients with BD exhibited extensive cognitive deficits in verbal executive functions and visuospatial processing. Compare to HC, both patients with UD and BD showed increased frontal-central beta power while high gamma power was decreased in UD groups during the resting-state. The significant correlations between cognitive function and average beta power were observed. CONCLUSIONS Patients with BD had more cognitive impairments on different dimensions than those with UD, involving disrupted beta power modulations. Our investigation provides a better understanding of the neuroelectrophysiological process underlying cognitive impairments in patients with UD and BD.
Collapse
Affiliation(s)
- HaoFei Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Clinical Psychology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - JiaBo Shi
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - RongXin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - YingLin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhiLu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - HongLiang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhiJian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing 210093, China; School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
5
|
Shan X, Li J, Zeng L, Wang H, Yang T, Shao Y, Yu M. Motor Imagery-Related Changes of Neural Oscillation in Unilateral Lower Limb Amputation. Front Neurosci 2022; 16:799995. [PMID: 35663556 PMCID: PMC9160601 DOI: 10.3389/fnins.2022.799995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
An amputation is known to seriously affect patient quality of life. This study aimed to investigate changes in neural activity in amputees during the postoperative period using neural electrophysiological techniques. In total, 14 patients with left lower limb amputation and 18 healthy participants were included in our study. All participants were required to perform motor imagery paradigm tasks while electroencephalogram (EEG) data were recorded. Data analysis results indicated that the beta frequency band showed significantly decreased oscillatory activity in motor imaging-related brain regions such as the frontal lobe and the precentral and postcentral gyri in amputees. Furthermore, the functional independent component analysis (fICA) value of neural oscillation negatively correlated with the C4 electrode power value of the motor imagery task in amputees (p < 0.05). Therefore, changes in neural oscillations and beta frequency band in motor imagery regions may be related to brain remodeling in amputees.
Collapse
Affiliation(s)
- Xinying Shan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Jialu Li
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lingjing Zeng
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Yongcong Shao,
| | - Mengsun Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Mengsun Yu,
| |
Collapse
|
6
|
Wang Y, Li J, Zeng L, Wang H, Yang T, Shao Y, Weng X. Open Eyes Increase Neural Oscillation and Enhance Effective Brain Connectivity of the Default Mode Network: Resting-State Electroencephalogram Research. Front Neurosci 2022; 16:861247. [PMID: 35573310 PMCID: PMC9092973 DOI: 10.3389/fnins.2022.861247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The default mode network (DMN) has a unique activity pattern in the resting brain. Studies on resting-state brain activity are helpful to identify various brain dynamic characteristics of patients with mental diseases and those of healthy people. The brain produces a series of changes in different eye states. However, the relationship between eye states and the DMN, which is closely related to the resting state, has not been widely examined. This study recruited 42 healthy students aged 17–22. Participants completed the Profile of Mood States questionnaire. Thereafter, the electroencephalogram data was collected with the patients’ eyes open and closed. Changes in neural oscillation and the DMN’s information transmission during different eye openness states were compared. The results showed that the neural oscillation activities of the parietal-occipital network such as the superior parietal lobule and precuneus were significantly enhanced in the eyes open state. In addition, the effective connectivity within the DMN was enhanced during opened eyes, especially from the left precuneus to the left posterior cingulate cortex, and this connectivity was negatively correlated with the Vigor-Activity mood state in the eyes open state. The activity of the DMN in the resting-state is regulated by eye states, which may relate to mood and emotional perception.
Collapse
Affiliation(s)
- Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China.,School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Jialu Li
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lingjing Zeng
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Haiteng Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Tianyi Yang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiechuan Weng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Jouzizadeh M, Ghaderi AH, Cheraghmakani H, Baghbanian SM, Khanbabaie R. Resting-State Brain Network Deficits in Multiple Sclerosis Participants: Evidence from Electroencephalography and Graph Theoretical Analysis. Brain Connect 2021; 11:359-367. [PMID: 33780635 DOI: 10.1089/brain.2020.0857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Multiple sclerosis (MS) is a chronic inflammatory disease leading to demyelination and axonal loss in the central nervous system that causes focal lesions of gray and white matter. However, the functional impairments of brain networks in this disease are still unspecified and need to be clearer. Materials and Methods: In the present study, we investigate the resting-state brain network impairments for MS participants in comparison to a normal group using electroencephalography (EEG) and graph theoretical analysis with a source localization method. Thirty-four age- and gender-matched participants from each MS group and normal group participated in this study. We recorded 5 min of EEG in the resting-state eyes open condition for each participant. One min (15 equal 4-sec artifact-free segments) of the EEG signals were selected for each participant, and the Low-Resolution Electromagnetic Tomography software was employed to calculate the functional connectivity among whole cortical regions in six frequency bands (delta, theta, alpha, beta1, beta2, and beta3). Graph theoretical analysis was used to calculate the clustering coefficient (CL), betweenness centrality (BC), shortest path length (SPL), and small-world propensity (SWP) for weighted connectivity matrices. Nonparametric permutation tests were utilized to compare these measures between groups. Results: Significant differences between the MS group and the normal group in the average of BC and SWP were found in the alpha band. The significant differences in the BC were spread over all lobes. Conclusion: These results suggest that the resting-state brain network for the MS group is disrupted in local and global scales, and EEG has the capability of revealing these impairments.
Collapse
Affiliation(s)
- Mojtaba Jouzizadeh
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
| | - Amir Hossein Ghaderi
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hamed Cheraghmakani
- Department of Neurology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran.,Department of Physics, I.K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|