1
|
Three-Dimensional Printing in Hand Surgery. J Hand Surg Am 2021; 46:1016-1022. [PMID: 34274209 DOI: 10.1016/j.jhsa.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023]
Abstract
The medical application of 3-dimensional printing technology has evolved in the last decade, with an increasing variety of uses in hand surgery. The ability for patient-specific design, rapid prototyping, and low cost of production of 3-dimensional printed materials has led to this rise in clinical applications, both for common procedures and complex reconstructions. Within hand surgery, 3-dimensional printing can be applied in several broad categories: to construct patient-specific models for preoperative planning, to design orthotics and prosthetics to meet specific patient demands, to create patient-specific aids for intraoperative use, to generate patient-specific hardware and prostheses for implantation, and for applications for trainee education.
Collapse
|
2
|
Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4650245. [PMID: 33855068 PMCID: PMC8019389 DOI: 10.1155/2021/4650245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) printing is spreading in hand surgery. There is an increasing number of practical applications like the training of junior hand surgeons, patient education, preoperative planning, and 3D printing of customized casts, customized surgical guides, implants, and prostheses. Some high-quality studies highlight the value for surgeons, but there is still a lack of high-level evidence for improved clinical endpoints and hence actual impact on the patient's outcome. This article provides an overview over the latest applications of 3D printing in hand surgery and practical experience of implementing them into daily clinical routine.
Collapse
|
3
|
Gerber N, Carrillo F, Abegg D, Sutter R, Zheng G, Fürnstahl P. Evaluation of CT-MR image registration methodologies for 3D preoperative planning of forearm surgeries. J Orthop Res 2020; 38:1920-1930. [PMID: 32108368 DOI: 10.1002/jor.24641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 02/04/2023]
Abstract
Computerized surgical planning for forearm procedures that considers both soft and bony tissue, requires alignment of preoperatively acquired computed tomography (CT) and magnetic resonance (MR) images by image registration. Normalized mutual information (NMI) registration techniques have been researched to improve efficiency and to eliminate the user dependency associated with manual alignment. While successfully applied in various medical fields, the application of NMI registration to images of the forearm, for which the relative pose of the radius and ulna likely differs between CT and MR acquisitions, is yet to be described. To enable the alignment of CT and MR forearm data, we propose an NMI-based registration pipeline, which allows manual steering of the registration algorithm to the desired image subregion and is, thus, applicable to the forearm. Successive automated registration is proposed to enable planning incorporating multiple target anatomical structures such as the radius and ulna. With respect to gold-standard manual registration, the proposed registration methodology achieved mean accuracies of 0.08 ± 0.09 mm (0.01-0.41 mm range) in comparison with 0.28 ± 0.23 mm (0.03-0.99 mm range) associated with a landmark-based registration when tested on 40 patient data sets. Application of the proposed registration pipeline required less than 10 minutes on average compared with 20 minutes required by the landmark-based registration. The clinical feasibility and relevance of the method were tested on two different clinical applications, a forearm tumor resection and radioulnar joint instability analysis, obtaining accurate and robust CT-MR image alignment for both cases.
Collapse
Affiliation(s)
- Nicolas Gerber
- Sitem Center for Translational Medicine and Biomedical Entrepreneurship, University of Bern, Bern, Switzerland
| | - Fabio Carrillo
- Research in Orthopedic Computer Science, Balgrist University Hospital, Zürich, Switzerland
| | - Daniel Abegg
- Research in Orthopedic Computer Science, Balgrist University Hospital, Zürich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Zürich, Switzerland
| | - Guoyan Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Philipp Fürnstahl
- Research in Orthopedic Computer Science, Balgrist University Hospital, Zürich, Switzerland
| |
Collapse
|
4
|
Caiti G, Dobbe JGG, Strackee SD, Strijkers GJ, Streekstra GJ. Computer-Assisted Techniques in Corrective Distal Radius Osteotomy Procedures. IEEE Rev Biomed Eng 2020; 13:233-247. [DOI: 10.1109/rbme.2019.2928424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Jiang M, Chen G, Coles‐Black J, Chuen J, Hardidge A. Three‐dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: a systematic review. ANZ J Surg 2019; 90:243-250. [DOI: 10.1111/ans.15549] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Michael Jiang
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
| | - Gordon Chen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
| | - Jasamine Coles‐Black
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Jason Chuen
- 3DMedLab, Austin HealthThe University of Melbourne Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
- Department of Vascular SurgeryAustin Health Melbourne Victoria Australia
| | - Andrew Hardidge
- Department of Orthopaedic SurgeryAustin Health Melbourne Victoria Australia
- Department of SurgeryThe University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
6
|
3D printing in hand surgery. HAND SURGERY & REHABILITATION 2019; 38:338-347. [PMID: 31568862 DOI: 10.1016/j.hansur.2019.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 09/08/2019] [Indexed: 11/20/2022]
Abstract
While 3D printing in hand surgery is still in its infancy, it offers new avenues in research, teaching, and personalized medicine. For these reasons, some surgeons may want to jump on the bandwagon of this trendy technology. But we cannot forget that its superiority over conventional techniques has not been demonstrated. Surgeons who want to work with 3D printed objects must master their use and the entire manufacturing process, otherwise they risk becoming dependent on engineers and/or medical device companies.
Collapse
|
7
|
Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN, Mitsouras D, Morris J, Matsumoto J, Christensen A, Liacouras P, Rybicki FJ, Sheikh A. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 2018; 4:11. [PMID: 30649688 PMCID: PMC6251945 DOI: 10.1186/s41205-018-0030-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Medical three-dimensional (3D) printing has expanded dramatically over the past three decades with growth in both facility adoption and the variety of medical applications. Consideration for each step required to create accurate 3D printed models from medical imaging data impacts patient care and management. In this paper, a writing group representing the Radiological Society of North America Special Interest Group on 3D Printing (SIG) provides recommendations that have been vetted and voted on by the SIG active membership. This body of work includes appropriate clinical use of anatomic models 3D printed for diagnostic use in the care of patients with specific medical conditions. The recommendations provide guidance for approaches and tools in medical 3D printing, from image acquisition, segmentation of the desired anatomy intended for 3D printing, creation of a 3D-printable model, and post-processing of 3D printed anatomic models for patient care.
Collapse
Affiliation(s)
- Leonid Chepelev
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Nicole Wake
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY USA
- Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY USA
| | | | - Waleed Althobaity
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Ashish Gupta
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Elsa Arribas
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lumarie Santiago
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO USA
| | - Kenneth C Wang
- Baltimore VA Medical Center, University of Maryland Medical Center, Baltimore, MD USA
| | - William Weadock
- Department of Radiology and Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI USA
| | - Ciprian N Ionita
- Department of Neurosurgery, State University of New York Buffalo, Buffalo, NY USA
| | - Dimitrios Mitsouras
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | | | | | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Frank J Rybicki
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|