1
|
Mentana A, Lamartinière Y, Orsière T, Malard V, Payet M, Slomberg D, Guardamagna I, Lonati L, Grisolia C, Jha A, Lebaron-Jacobs L, Rose J, Ottolenghi A, Baiocco G. Tritiated Steel Micro-Particles: Computational Dosimetry and Prediction of Radiation-Induced DNA Damage for In Vitro Cell Culture Exposures. Radiat Res 2023; 199:25-38. [PMID: 36442022 DOI: 10.1667/rade-22-00043.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Thierry Orsière
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | | | - Danielle Slomberg
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | | | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Jerome Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Andrea Ottolenghi
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Abstract
The detection and monitoring systems of low energy beta particles are of important concern in nuclear facilities and decommissioning sites. Generally, low-energy beta-rays have been measured in systems such as liquid scintillation counters and gas proportional counters but time is required for pretreatment and sampling, and ultimately it is difficult to obtain a representation of the observables. The risk of external exposure for low energy beta-ray emitting radioisotopes has not been significantly considered due to the low transmittance of the isotopes, whereas radiation protection against internal exposure is necessary because it can cause radiation hazard to into the body through ingestion and inhalation. In this review, research to produce various types of detectors and to measure low-energy beta-rays by using or manufacturing plastic scintillators such as commercial plastic and optic fiber is discussed. Furthermore, the state-of-the-art beta particle detectors using plastic scintillators and other types of beta-ray counters were elucidated with regard to characteristics of low energy beta-ray emitting radioisotopes. Recent rapid advances in organic matter and nanotechnology have brought attention to scintillators combining plastics and nanomaterials for all types of radiation detection. Herein, we provide an in-depth review on low energy beta emitter measurement.
Collapse
|