1
|
Sun J, Zhao N, Zhang R, Li Y, Yu T, Nong Q, Lin L, Yang X, Luan T, Chen B, Huang Y. Metabolic landscape of human alveolar type II epithelial cells undergoing epithelial-mesenchymal transition induced directly by silica exposure. J Environ Sci (China) 2025; 149:676-687. [PMID: 39181677 DOI: 10.1016/j.jes.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 08/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays an irreplaceable role in the development of silicosis. However, molecular mechanisms of EMT induced by silica exposure still remain to be addressed. Herein, metabolic profiles of human alveolar type II epithelial cells (A549 cells) exposed directly to silica were characterized using non-targeted metabolomic approaches. A total of 84 differential metabolites (DMs) were identified in silica-treated A549 cells undergoing EMT, which were mainly enriched in metabolisms of amino acids (e.g., glutamate, alanine, aspartate), purine metabolism, glycolysis, etc. The number of DMs identified in the A549 cells obviously increased with the elevated exposure concentration of silica. Remarkably, glutamine catabolism was significantly promoted in the silica-treated A549 cells, and the levels of related metabolites (e.g., succinate) and enzymes (e.g., α-ketoglutarate (α-KG) dehydrogenase) were substantially up-regulated, with a preference to α-KG pathway. Supplementation of glutamine into the cell culture could substantially enhance the expression levels of both EMT-related markers and Snail (zinc finger transcription factor). Our results suggest that the EMT of human alveolar epithelial cells directly induced by silica can be essential to the development of silicosis.
Collapse
Affiliation(s)
- Jin Sun
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Ruijia Zhang
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Yizheng Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 540080, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Li Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xubin Yang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China.
| |
Collapse
|
2
|
Li Z, Zhang W, Li S, Tao X, Xu H, Wu Y, Chen Q, Ning A, Tian T, Zhang L, Cui J, Wang W, Chu M. Integration of apaQTL and eQTL analysis reveals novel SNPs associated with occupational pulmonary fibrosis risk. Arch Toxicol 2024; 98:2117-2129. [PMID: 38538875 DOI: 10.1007/s00204-024-03734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 06/13/2024]
Abstract
To explore the association between apaQTL/eQTL-SNPs and the susceptibility to silicosis. A silicosis-related GWAS was initially conducted to screen for single nucleotide polymorphisms (SNPs) associated with the risk of silicosis. Candidate SNPs with apaQTL and eQTL functions were then obtained from the 3'aQTL-atlas and GTEx databases. Subsequently, additional case-control studies were performed to validate the relationship between the candidate apaQTL/eQTL-SNPs and the risk of silicosis. Finally, experiments were conducted to illustrate APA events occurring at different alleles of the identified apaQTL/eQTL-SNPs. The combined results of the GWAS and iMLDR validations indicate that the variant T allele of the rs2974341 located on SMIM19 (additive model: OR = 0.66, the 95% CI = 0.53-0.84, P = 0.001) and the variant T allele of the rs2390488 located on TMTC4 (additive model: OR = 0.72, 95% CI = 0.57-0.90, P = 0.005) were significantly associated with decreased risk of developing silicosis susceptibility. Furthermore, 3'RACE experiments verified the presence of two poly (A) sites (proximal and distal) in SMIM19, rs2974341 may remotely regulate the binding between miRNA-3646 and SMIM19 with its high LD locus rs2974353 to affect the expression level of SMIM19. The rs2974341 variant T allele may contribute to the generation of the shorter 3'UTR transcript of SMIM19 and affect the binding of miRNA-3646 to the target gene SMIM19. The apaQTL/eQTL-SNPs may provide new perspectives for evaluating the regulatory function of SNPs in the development of silicosis.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anhui Ning
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Occupational Health, Center for Disease Control and Prevention of Wuxi, Wuxi, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Cressey R, Han MTT, Khaodee W, Xiyuan G, Qing Y. Navigating PRKCSH's impact on cancer: from N-linked glycosylation to death pathway and anti-tumor immunity. Front Oncol 2024; 14:1378694. [PMID: 38571496 PMCID: PMC10987803 DOI: 10.3389/fonc.2024.1378694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
PRKCSH, also known as Glucosidase II beta subunit (GluIIβ), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIβ), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH's involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH's diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH's precise role and validate its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Ratchada Cressey
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Moe Thi Thi Han
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Worapong Khaodee
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Guo Xiyuan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yuan Qing
- Public Experimental Technology Center School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Yang X, Zhang J, Xiong M, Yang Y, Yang P, Li N, Shi F, Zhu Y, Guo K, Jin Y. NF-κB pathway affects silica nanoparticle-induced fibrosis via inhibited inflammatory response and epithelial-mesenchymal transition in 3D co-culture. Toxicol Lett 2023; 383:141-151. [PMID: 37394155 DOI: 10.1016/j.toxlet.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Long-term inhalation of silica nanoparticles (SiNPs) can induce pulmonary fibrosis (PF), nevertheless, the potential mechanisms remain elusive. Herein, we constructed a three-dimensional (3D) co-culture model by using Matrigel to investigate the interaction among different cells and potential regulatory mechanisms after SiNPs exposure. Methodologically, we dynamically observed the changes in cell morphology and migration after exposure to SiNPs by co-culturing mouse monocytic macrophages (RAW264.7), human non-small cell lung cancer cells (A549), and medical research council cell strain-5 (MRC-5) in Matrigel for 24 h. Subsequently, we detected the expression of nuclear factor kappa B (NF-κB), inflammatory factor and epithelial-mesenchymal transition (EMT) markers. The results showed that SiNPs produced toxic effects on cells. In the 3D co-culture state, the cell's movement velocity and displacement increased, and the cell migration ability was enhanced. Meanwhile, the expression of inflammatory factor tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were upregulated, the epithelial marker E-cadherin (E-cad) was downregulated, the mesenchymal marker N-cadherin (N-cad) and myofibroblast marker alpha-smooth muscle actin (α-SMA) expression were upregulated, while NF-κB expression was also upregulated after SiNPs exposure. We further found that cells were more prone to transdifferentiate into myofibroblasts in the 3D co-culture state. Conversely, utilizing the NF-κB-specific inhibitor BAY 11-7082 effectively downregulated the expression of TNF-α, IL-6, interleukin-1β (IL-1β), N-cad, α-SMA, collagen-I (COL I), and fibronectin (FN), the expression of E-cad was upregulated. These findings suggest that NF-κB is involved in regulating SiNPs-induced inflammatory, EMT, and fibrosis in the 3D co-culture state.
Collapse
Affiliation(s)
- Xiaojing Yang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yushan Yang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Pan Yang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Fan Shi
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yaxin Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Keyun Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
5
|
Sun XY, Li HZ, Xie DF, Gao SS, Huang X, Guan H, Bai CJ, Zhou PK. LPAR5 confers radioresistance to cancer cells associated with EMT activation via the ERK/Snail pathway. J Transl Med 2022; 20:456. [PMID: 36199069 PMCID: PMC9533496 DOI: 10.1186/s12967-022-03673-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a critical event contributing to more aggressive phenotypes in cancer cells. EMT is frequently activated in radiation-targeted cells during the course of radiotherapy, which often endows cancers with acquired radioresistance. However, the upstream molecules driving the signaling pathways of radiation-induced EMT have not been fully delineated. METHODS In this study, RNA-seq-based transcriptome analysis was performed to identify the early responsive genes of HeLa cells to γ-ray irradiation. EMT-associated genes were knocked down by siRNA technology or overexpressed in HeLa cells and A549 cells, and the resulting changes in phenotypes of EMT and radiosensitivity were assessed using qPCR and Western blotting analyses, migration assays, colony-forming ability and apoptosis of flow cytometer assays. RESULTS Through RNA-seq-based transcriptome analysis, we found that LPAR5 is downregulated in the early response of HeLa cells to γ-ray irradiation. Radiation-induced alterations in LPAR5 expression were further revealed to be a bidirectional dynamic process in HeLa and A549 cells, i.e., the early downregulating phase at 2 ~ 4 h and the late upregulating phase at 24 h post-irradiation. Overexpression of LPAR5 prompts EMT programing and migration of cancer cells. Moreover, increased expression of LPAR5 is significantly associated with IR-induced EMT and confers radioresistance to cancer cells. Knockdown of LPAR5 suppressed IR-induced EMT by attenuating the activation of ERK signaling and downstream Snail, MMP1, and MMP9 expression. CONCLUSIONS LPAR5 is an important upstream regulator of IR-induced EMT that modulates the ERK/Snail pathway. This study provides further insights into understanding the mechanism of radiation-induced EMT and identifies promising targets for improving the effectiveness of cancer radiation therapy.
Collapse
Affiliation(s)
- Xiao-Ya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao-Zheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shan-Shan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Chen-Jun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ping-Kun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
6
|
Zhang J, Yang X, Yang Y, Xiong M, Li N, Ma L, Tian J, Yin H, Zhang L, Jin Y. NF-κB mediates silica-induced pulmonary inflammation by promoting the release of IL-1β in macrophages. ENVIRONMENTAL TOXICOLOGY 2022; 37:2235-2243. [PMID: 35635254 DOI: 10.1002/tox.23590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to respirable silica particles causes pulmonary inflammation and fibrosis primarily promoted by cytokines released from alveolar macrophages, yet the underlying mechanism is still unclear. From the perspective of nuclear factor kappa B (NF-κB), we studied the mechanism of IL-1β biosynthesis and release. Utilizing BAY 11-7082, an NF-κB specific inhibitor, we showed the alteration of macrophage viability and examined the expression of both IL-1β and NF-κB in vitro. We found that silica nanoparticles (SiNPs) were internalized by macrophages and caused damage to cell integrity. The immunofluorescence assay showed that SiNPs exposure enhanced the expression of IL-1β and NF-κB, which could be effectively suppressed by BAY 11-7082. Besides, we built silica exposure mouse model by intratracheally instilling 5 mg of SiNPs and checked the effect of silica exposure on pulmonary pathological changes. Consistently, we found an upregulation of IL-1β and NF-κB after SiNPs exposure, along with the aggravated inflammatory cell infiltration, thickened alveolar wall, and enhanced expression of collagens. In conclusion, SiNPs exposure causes pulmonary inflammation and fibrosis that is regulated by NK-κB through upregulating IL-1β in alveolar macrophages.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaojing Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yushan Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Lan Ma
- School of Public Health, Weifang Medical University, Weifang, China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Ju Z, Shao J, Zhou M, Jin J, Pan H, Ding P, Huang R. Transcriptomic and metabolomic profiling reveal the p53-dependent benzeneacetic acid attenuation of silica-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Cell Biosci 2021; 11:30. [PMID: 33546743 PMCID: PMC7866764 DOI: 10.1186/s13578-021-00545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/22/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Silica exposure underlies the development of silicosis, one of the most serious occupational hazards worldwide. We aimed to explore the interaction of the silica-induced epithelial-mesenchymal transition (EMT)-related transcripts with the cellular metabolism regulated by p53. METHODS We knocked out p53 using CRISPR/Cas9 in the human bronchial epithelial (HBE) cell line. The transcriptomic and metabolomic analyses and integrative omics were conducted using microarrays, GC-MS, and MetaboAnalyst, respectively. RESULTS Fifty-two mRNAs showed significantly altered expression in the HBE p53-KO cells post-silica exposure. A total of 42 metabolites were putatively involved in p53-dependent silica-mediated HBE cell dysfunction. Through integrated data analysis, we obtained five significant p53-dependent metabolic pathways including phenylalanine, glyoxylate, dicarboxylate, and linoleic acid metabolism, and the citrate cycle. Through metabolite screening, we further identified that benzeneacetic acid, a key regulation metabolite in the phenylalanine metabolic pathway, attenuated the silica-induced EMT in HBE cells in a p53-dependent manner. Interestingly, despite the extensive p53-related published literature, the clinical translation of these studies remains unsubstantial. CONCLUSIONS Our study offers new insights into the molecular mechanisms by which epithelial cells respond to silica exposure and provide fresh perspective and direction for future clinical biomarker research and potential clinically sustainable and translatable role of p53.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Jianlin Shao
- Zhejiang Provincial Center for Cardiovascular Disease Prevention and Control, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|