1
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
2
|
Shadab A, Farokhi S, Fakouri A, Mohagheghzadeh N, Noroozi A, Razavi ZS, Karimi Rouzbahani A, Zalpoor H, Mahjoor M. Hydrogel-based nanoparticles: revolutionizing brain tumor treatment and paving the way for future innovations. Eur J Med Res 2025; 30:71. [PMID: 39905470 DOI: 10.1186/s40001-025-02310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Brain tumor treatment remains a significant challenge due to their high mortality and resistance to current therapies. This paper discusses the promising potential of hydrogel-based nanoparticles as innovative drug delivery systems for brain tumor therapy. Extensive characterization techniques reveal the ability of these Nano-systems to demonstrate prolonged blood circulation and targeted delivery, leading to improved survival rates. Designed with optimized physicochemical characteristics, these nanoparticles effectively cross the blood-brain barrier, circumventing a major impediment to drug delivery to the brain. By delivering drugs directly to the tumor bed, these nanoparticles enhance therapeutic outcomes and minimize adverse effects. In addition, this review investigates the techniques for characterizing, visualizing, and modifying these nanoparticles, as well as the standing challenges and promising research avenues for their clinical application. Further investigations are encouraged by this review to investigate potential advancements in hydrogel-based nanoparticle therapeutic approaches for brain tumors. This includes investigating tailored hydrogels, hybrid systems, computational modeling, and the integration of gene therapy and immunotherapy techniques. The study also addresses the need for enhanced synthesis techniques, stability, scalability, and cost-cutting measures to overcome obstacles and advance the clinical use of hydrogel-based nanoparticles in treating brain tumors.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Deputy of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Neda Mohagheghzadeh
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noroozi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
| | - Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sasse R, Carpenter N, Simpkins CO. Selective nitric oxide redistribution by phospholipid nanoparticles: A novel strategy to mitigate massive nitric oxide release and prevent reperfusion injury in septic shock. Free Radic Biol Med 2025; 227:276-281. [PMID: 39645204 DOI: 10.1016/j.freeradbiomed.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Nitric oxide plays a critical role in regulating vascular tone, but excessive nitric oxide release during septic shock results in hypotension due to excessive vasodilation and the formation of toxic free radicals. VBI-S is a phospholipid nanoparticle based fluid composed of lipid bilayers formed primarily by phosphatidylcholine and micelles of soybean oil encapsulated by a monolayer of phosphatidylcholine. These nanoparticles offer a novel solution by absorbing and redistributing nitric oxide and nitrite, potentially mitigating the harmful effects of excessive nitric oxide in sepsis. This paper proposes a mechanism in which VBI-S not only redistributes nitric oxide but also reduces ischemia-reperfusion injury by limiting the production and availability of reactive species. VBI-S captures nitric oxide and nitrite in areas of high concentration and redistributes them in low-nitric oxide environments, primarily within oxygen-deprived tissues. Nitrite then contributes to nitric oxide regeneration in hypoxic microvasculature via various reduction pathways, thereby improving tissue perfusion and minimizing oxidative stress. Preliminary studies suggest that nitrite may also decrease reactive species production, primarily superoxide, through the inhibition of mitochondrial complex I. Additionally, the lipid composition of VBI-S is rich in poly and monounsaturated fatty acids which allows VBI-S to act as a substrate for peroxidation via peroxynitrite. Therefore, VBI-S acts as a decoy target thereby protecting cellular membranes from oxidative damage caused by reactive species. These findings position VBI-S as a promising therapeutic agent, offering both nitric oxide regulation and protection against hypotension and toxic free radicals in septic shock patients. Further research is necessary to fully elucidate the molecular pathways and optimize its clinical application.
Collapse
Affiliation(s)
- Ryan Sasse
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA.
| | - Nathan Carpenter
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Cuthbert O Simpkins
- Department of Surgery, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
4
|
Patrojanasophon P, Singpanna K, Rojanarata T, Opanasopit P, Ngawhirunpat T, Pengnam S, Pornpitchanarong C. Folate receptor-targeted thiol-maleimide clicked chitosan/carboxymethyl cellulose nanoparticles for cisplatin delivery in oral carcinoma. Int J Biol Macromol 2025; 290:138976. [PMID: 39708877 DOI: 10.1016/j.ijbiomac.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to develop cisplatin (CDDP)-loaded folic acid (FA)-decorated nanoparticles (NPs) as targeted drug carrier towards overexpressed folate receptors on the oral carcinoma cell line (KB cells). The FA-conjugated thiolated succinyl chitosan (FA-SH-SCS) and maleimide-grafted-carboxymethyl cellulose (CMC-MAL) were synthesized and acquired in the preparation of NPs via thiol-maleimide click reaction. The physicochemical characteristics, drug loading, and drug release of the FA-decorated NPs (FA-NPs) were examined. Also, the in vitro biocompatibility, cellular uptake, and cell death mechanism were investigated. Relatively spherical NPs with negative charge were obtained with a size of approximately 200 nm. The formation of FA-NPs through click reaction was confirmed by the pH change and Ellman's assay. The release of CDDP from the FA-NPs was influenced by the acidic tumor environment. The FA-NPs were non-toxic to the normal cells. Furthermore, FA-NPs improved the cellular uptake of CDDP in oral carcinoma cells through specific recognition of folate receptors by FA-NPs. The delivery of CDDP by FA-NPs to the KB cell induced the apoptotic cell death pathway. Therefore, FA-NPs presented the potential to be effective nanocarriers for CDDP delivery in the treatment of oral cancer via active targeting approach.
Collapse
Affiliation(s)
- Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
5
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025:1-20. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
6
|
Ayub H, Jabeen U, Ahmad I, Aamir M, Ullah A, Mushtaq A, Behlil F, Javaid B, Syed A, Elgorban AM, Bahkali AH, Zairov R, Ali A. Enhanced anticancer and biological activities of environmentally friendly Ni/Cu-ZnO solid solution nanoparticles. Heliyon 2024; 10:e39912. [PMID: 39687105 PMCID: PMC11647829 DOI: 10.1016/j.heliyon.2024.e39912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/27/2024] [Indexed: 12/18/2024] Open
Abstract
The study investigates the impact of incorporating Ni and Cu into the lattice of ZnO nanoparticles (NPs) to enhance their anticancer and antioxidant properties. Characterization techniques including pXRD, FTIR, UV-visible absorption spectroscopy, FESEM, and EDAX confirm the successful synthesis and structural modifications of Ni/Cu-ZnO NPs. Anticancer activity against breast cancer (MDA) and normal skin (BHK-21) cells reveals dose-dependent cytotoxicity, with Ni/Cu-ZnO NPs exhibiting higher efficacy against MDA cells while being less harmful to BHK-21 cells. Morphological studies corroborate these findings. Additionally, antioxidant assays using TAC, FRAP, and DPPH assay demonstrate the superior antioxidant activity of Ni/Cu-ZnO NPs matched to pure ZnO. Overall, the synergistic effect of Ni and Cu incorporation leads to improved therapeutic potential, making Ni/Cu-ZnO NPs promising candidates for cancer therapy and antioxidant applications. Molecular docking recreations were performed using Auto Dock Vina software to gain more insights and validate the observed biological activities of un-doped ZnO and bi-metal doped ZnO NPs, we investigated the interaction and binding affinities of pure ZnO and bimetallic metal co-doped ZnO for their antioxidant and anticancer studies. Ni/Cu-ZnO have shown good antioxidants and exhibited remarkable anticancer activities.
Collapse
Affiliation(s)
- Huma Ayub
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Uzma Jabeen
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Muhammad Aamir
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Ullah
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), Quetta, Pakistan
| | - Ayesha Mushtaq
- Department of Biochemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Farida Behlil
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Binish Javaid
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rustem Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo str., Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asad Ali
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187, Luleå, Sweden
| |
Collapse
|
7
|
Cavdar E, Karaboyun K, Iriagac Y. Nanotechnology in oncology: a mini review. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20241347. [PMID: 39630738 PMCID: PMC11639546 DOI: 10.1590/1806-9282.20241347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Eyyup Cavdar
- Tekirdağ Namık Kemal University, Department of Medical Oncology – Tekirdağ, Turkey
| | - Kubilay Karaboyun
- Agri Ibrahim Cecen University, Training and Research Hospital, Department of Medical Oncology – Ağrı, Turkey
| | - Yakup Iriagac
- Balikesir Ataturk City Hospital, Department of Medical Oncology – Balıkesir, Turkey
| |
Collapse
|
8
|
Pathoor NN, Ganesh PS, Gopal RK. Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression. World J Microbiol Biotechnol 2024; 40:398. [PMID: 39612015 DOI: 10.1007/s11274-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has long been recognized primarily as a hospital-acquired pathogen. However, recent studies have uncovered a potential link between this bacterium and oral cancer, necessitating a deeper exploration of this relationship. This review examines the relevance of A. baumannii biofilms in the context of oral cancer development. By synthesizing current knowledge, we seek to provide a comprehensive understanding of this emerging area of research and identify critical directions for future investigations. The review emphasizes the remarkable adaptability, environmental resilience, and antibiotic resistance of A. baumannii, delves into the molecular mechanisms of biofilm formation, and their potential connection to oral cancer progression. The review also evaluates how biofilm colonization on oral surfaces and medical devices, along with its role in chronic infections, inflammation, and increased antimicrobial resistance, could contribute to creating a microenvironment favourable for tumor development. This review underscores the broader healthcare implications of A. baumannii biofilms, evaluates current strategies for their prevention and eradication, and calls for interdisciplinary research in this emerging field. By shedding light on the complex interactions between A. baumannii biofilms and oral cancer, it aims to stimulate further research and guide the development of new diagnostic, preventive, and therapeutic strategies in both microbiology and oncology.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
9
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
10
|
Rajaram J, Kuthati Y. Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects. Cancers (Basel) 2024; 16:3581. [PMID: 39518022 PMCID: PMC11545372 DOI: 10.3390/cancers16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: The significant expansion of nanobiotechnology and nanomedicine has led to the development of innovative and effective techniques to combat various pathogens, demonstrating promising results with fewer adverse effects. Metal peroxide nanoparticles stand out among the crucial yet often overlooked types of nanomaterials, including metals. These nanoparticles are key in producing oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, which are vital in treating various diseases. These compounds play a crucial role in boosting the effectiveness of different treatment methods and also possess unique properties due to the addition of metal ions. Methods: This review discusses and analyzes some of the most common metal peroxide nanoparticles, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. These nanosystems, characterized by their greater potential and treatment efficiency, are primarily needed in nanomedicine to combat various harmful pathogens. Researchers have extensively studied the effects of these peroxides in various treatments, such as catalytic nanotherapeutics, photodynamic therapy, radiation therapy, and some combination therapies. The tumor microenvironment (TME) is particularly unique, making the impact of nanomedicine less effective or even null. The presence of high levels of reactive oxygen species (ROS), hypoxia, low pH, and high glutathione levels makes them competitive against nanomedicine. Controlling the TME is a promising approach to combating cancer. Results: Metal peroxides with low biodegradability, toxicity, and side effects could reduce their effectiveness in treating the TME. It is important to consider the distribution of metal peroxides to effectively target cancer cells while avoiding harm to nearby normal cells. As a result, modifying the surface of metal peroxides is a key strategy to enhance their delivery to the TME, thereby improving their therapeutic benefits. Conclusions: This review discussed the various aspects of the TME and the importance of modifying the surface of metal peroxides to enhance their therapeutic advantages against cancer, as well as address safety concerns. Additionally, this review covered the current challenges in translating basic research findings into clinical applications of therapies based on metal peroxide nanoparticles.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan
| |
Collapse
|
11
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
12
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Gokhale KM, Patravale V, Pingale R, Pandey P, Vavilala SL. Se-functionalized ZIF-8 nanoparticles: synthesis, characterization and disruption of biofilms and quorum sensing in Serratia marcescens. Biomed Mater 2024; 19:055020. [PMID: 39025122 DOI: 10.1088/1748-605x/ad6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIFchemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone-stabilized Se(0) nanoparticles -8 were affected by the ratios of Se/Zn2+and [hmim]/Zn2+used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy (SEM). The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation inS. marcescens,but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was validated by confocal laser scanning microscopy and SEM analysis. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused byS. marcescensand offer a solution for antimicrobial resistance.
Collapse
Affiliation(s)
- Kunal M Gokhale
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle, Mumbai 400056, India
| | - Vandana Patravale
- Institute of Chemical Technology, Department of Pharm. Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Rutuja Pingale
- Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar 421003, India
| | - Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| |
Collapse
|
14
|
Qureshi M, Viegas C, Duarte SOD, Girardi M, Shehzad A, Fonte P. Camptothecin-loaded mesoporous silica nanoparticles functionalized with CpG oligodeoxynucleotide as a new approach for skin cancer treatment. Int J Pharm 2024; 660:124340. [PMID: 38878838 DOI: 10.1016/j.ijpharm.2024.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
The therapeutic efficacy of camptothecin (CPT), a potent antitumor alkaloid, is hindered by its hydrophobic nature and instability, limiting its clinical use in treating cutaneous squamous cell carcinoma (SCC). This study introduces a novel nano drug delivery system (NDDS) utilizing functionalized mesoporous silica nanoparticles (FMSNs) for efficient CPT delivery. The FMSNs were loaded with CPT and subsequently coated with chitosan (CS) for enhanced stability and bioadhesion. Importantly, CpG oligodeoxynucleotide (CpG ODN) was attached onto the CS-coated FMSNs to leverage the immunostimulatory properties of CpG ODN, augmenting the chemotherapy's efficacy. The final formulation FMSN-CPT-CS-CpG displayed an average size of 241 nm and PDI of 0.316 with an encapsulation efficiency of 95 %. Comprehensive in vitro and in vivo analyses, including B16F10 cells and DMBA/TPA-induced SCC murine model, demonstrated that the FMSN-CPT-CS-CpG formulation significantly enhanced cytotoxicity against B16F10 cells and induced complete regression in 40 % of the in vivo subjects, surpassing the efficacy of standard CPT and FMSN-CPT treatments. This study highlights the potential of combining chemotherapeutic and immunotherapeutic agents in an NDDS for targeted, efficient skin cancer treatment.
Collapse
Affiliation(s)
- Munibah Qureshi
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan
| | - Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Sofia O D Duarte
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Michael Girardi
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan.
| | - Pedro Fonte
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
15
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Anticancer Activity of Metallodrugs and Metallizing Host Defense Peptides-Current Developments in Structure-Activity Relationship. Int J Mol Sci 2024; 25:7314. [PMID: 39000421 PMCID: PMC11242492 DOI: 10.3390/ijms25137314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This article provides an overview of the development, structure and activity of various metal complexes with anti-cancer activity. Chemical researchers continue to work on the development and synthesis of new molecules that could act as anti-tumor drugs to achieve more favorable therapies. It is therefore important to have information about the various chemotherapeutic substances and their mode of action. This review focuses on metallodrugs that contain a metal as a key structural fragment, with cisplatin paving the way for their chemotherapeutic application. The text also looks at ruthenium complexes, including the therapeutic applications of phosphorescent ruthenium(II) complexes, emphasizing their dual role in therapy and diagnostics. In addition, the antitumor activities of titanium and gold derivatives, their side effects, and ongoing research to improve their efficacy and reduce adverse effects are discussed. Metallization of host defense peptides (HDPs) with various metal ions is also highlighted as a strategy that significantly enhances their anticancer activity by broadening their mechanisms of action.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
16
|
Darguzyte M, Rama E, Rix A, Baier J, Hermann J, Rezvantalab S, Khedri M, Jankowski J, Kiessling F. Riboflavin-targeted polymers improve tolerance of paclitaxel while maintaining therapeutic efficacy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102751. [PMID: 38705222 DOI: 10.1016/j.nano.2024.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/15/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne, 50931 Cologne, Germany; Institute for Translational Immune-Oncology, Cancer Research Center Cologne-Essen (CCCE), University of Cologne, 50931 Cologne, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Juliane Hermann
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN), 19839-63113 Tehran, Iran
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany; Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
17
|
Munteanu RA, Tigu AB, Feder R, Tatar AS, Gulei D, Tomuleasa C, Boca S. In vivo imaging system (IVIS) therapeutic assessment of tyrosine kinase inhibitor-loaded gold nanocarriers for acute myeloid leukemia: a pilot study. Front Pharmacol 2024; 15:1382399. [PMID: 38799169 PMCID: PMC11116693 DOI: 10.3389/fphar.2024.1382399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy in the myeloid lineage that is characterized by symptoms like fatigue, bleeding, infections, or anemia, and it can be fatal if untreated. In AML, mutations in tyrosine kinases (TKs) lead to enhanced tumor cell survival. The most frequent mutations in TKs are reported in Fms-like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), and KIT (tyrosine-protein kinase KIT), making these TKs potential targets for TK inhibitor (TKI) therapies in AML. With 30% of the mutations in TKs, mutated FLT3 is associated with poor overall survival and an increased chance of resistance to therapy. FLT3 inhibitors are used in FLT3-mutant AML, and the combination with hypomethylating agents displayed promising results. Midostaurin (MDS) is the first targeted therapy in FLT3-mutant AML, and its combination with chemotherapy showed good results. However, chemotherapies induce several side effects, and an alternative to chemotherapy might be the use of nanoparticles for better drug delivery, improved bioavailability, reduced drug resistance and induced toxicity. The herein study presents MDS-loaded gold nanoparticles and compares its efficacy with MDS alone, on both in vitro and in vivo models, using the FLT3-ITD-mutated AML cell line MV-4-11 Luc2 transfected to express luciferin. Our preclinical study suggests that MDS-loaded nanoparticles have a better tumor inhibitory effect than free drugs on in vivo models by controlling tumor growth in the first half of the treatment, while in the second part of the therapy, the tumor size was comparable to the cohort that was treatment-free.
Collapse
Affiliation(s)
- Raluca-Andrada Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Richard Feder
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra-Sorina Tatar
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Abujamous L, Soltani A, Al-Thawadi H, Agouni A. Advances in nanotechnology-enabled drug delivery for combining PARP inhibitors and immunotherapy in advanced ovarian cancer. BIOMOLECULES & BIOMEDICINE 2024; 24:230-237. [PMID: 38231530 PMCID: PMC10950340 DOI: 10.17305/bb.2023.9757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Advanced ovarian cancer is a malignancy that spreads beyond the ovaries to the pelvis, abdomen, lungs, or lymph nodes. Effective treatment options are available to improve survival rates in patients with advanced ovarian cancer. These include radiation, surgery, chemotherapy, immunotherapy, and targeted therapy. Drug resistance, however, remains a significant challenge in pharmacotherapeutic interventions, leading to reduced efficacy and unfavorable patient outcomes. Combination therapy, which involves using multiple drugs with different mechanisms of action at their optimal dose, is a promising approach to circumvent this challenge and it involves using multiple drugs with different mechanisms of action at their optimal dose. In recent years, nanotechnology has emerged as a valuable alternative for enhancing drug delivery precision and minimize toxicity. Nanoparticles can deliver drugs to specific cancer cells, resulting in higher drug concentrations at the tumor site, and reducing overall drug toxicity. Nanotechnology-based drug delivery systems have the potential to improve the therapeutic effects of anti-cancer drugs, reduce drug resistance, and improve outcomes for patients with advanced ovarian cancer. This literature review aims to examine the current understanding of combining poly (ADP-ribose) polymerase (PARP) inhibitors and immunotherapy in treating advanced ovarian cancer and the potential impact of nanotechnology on drug delivery.
Collapse
Affiliation(s)
- Lama Abujamous
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Abderrezzaq Soltani
- Office of Vice President for Medical and Health Sciences, Qatar University, Doha, Qatar
- Department of Clinical Pharmacy and Practice, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hamda Al-Thawadi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
20
|
Ma K, Pham T, Wang J, O-Sullivan I, DiCamillo A, Du S, Mwale F, Farooqui Z, Votta-Velis G, Bruce B, van Wijnen AJ, Liu Y, Im HJ. Nanoparticle-based inhibition of vascular endothelial growth factor receptors alleviates osteoarthritis pain and cartilage damage. SCIENCE ADVANCES 2024; 10:eadi5501. [PMID: 38354243 PMCID: PMC10866538 DOI: 10.1126/sciadv.adi5501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.
Collapse
Affiliation(s)
- Kaige Ma
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tiep Pham
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - InSug O-Sullivan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amy DiCamillo
- Melior Discovery Inc., 869 Springdale Drive 500, Exton, PA 19341, USA
| | - Shiyu Du
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Fackson Mwale
- Orthopaedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, McGill University, Montreal, Canada
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gina Votta-Velis
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Benjamin Bruce
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA
| | - Andre J. van Wijnen
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Ying Liu
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, IL 60612, USA
| |
Collapse
|
21
|
Lima-Sousa R, Melo BL, Mendonça AG, Correia IJ, de Melo-Diogo D. Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapy. Int J Pharm 2024; 651:123763. [PMID: 38176478 DOI: 10.1016/j.ijpharm.2023.123763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Nanomaterials' application in cancer therapy has been driven by their ability to encapsulate chemotherapeutic drugs as well as to reach the tumor site. Nevertheless, nanomedicines' translation has been limited due to their lack of specificity towards cancer cells. Although the nanomaterials' surface can be coated with targeting ligands, such has been mostly achieved through non-covalent functionalization strategies that are prone to premature detachment. Notwithstanding, cancer cells often establish resistance mechanisms that impair the effect of the loaded drugs. This bottleneck may be addressed by using near-infrared (NIR)-light responsive nanomaterials. The NIR-light triggered hyperthermic effect generated by these nanomaterials can cause irreversible damage to cancer cells or sensitize them to chemotherapeutics' action. Herein, a novel covalently functionalized targeted NIR-absorbing nanomaterial for cancer chemo-photothermal therapy was developed. For such, dopamine-reduced graphene oxide nanomaterials were covalently bonded with hyaluronic acid, and then loaded with doxorubicin (DOX/HA-DOPA-rGO). The produced nanomaterials showed suitable physicochemical properties, high encapsulation efficiency, and photothermal capacity. The in vitro studies revealed that the nanomaterials are cytocompatible and that display an improved uptake by the CD44-overexpressing breast cancer cells. Importantly, the combination of DOX/HA-DOPA-rGO with NIR light reduced breast cancer cells' viability to just 23 %, showcasing their potential chemo-photothermal therapy.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
22
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
23
|
Chakraborty A, Badhe RV, Abbas M, Chauhan A, Jaiswal A, Fareed R, Kumar V, Duan Y, Dutta N. Role of exosomal RNA in wound healing and tissue repair. EXOSOMAL RNA 2024:295-323. [DOI: 10.1016/b978-0-443-14008-2.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
25
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
27
|
Issa AA, Ibraheem HH, El-Sayed DS. Computational innovation of in situ metallic elements with zirconia as a novel possible carrier for chemotherapeutic medication. J Mol Model 2023; 30:14. [PMID: 38148383 DOI: 10.1007/s00894-023-05815-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
CONTEXT Electronic sustainable behavior on the material surface and in situ metal configuration were accompted with some metal atoms like Li, Na, and K elements. Metal-doped ZrO2 crystal exported modified characteristics related to electronic conduction and exhibited some dynamic modification around the surface of the metal oxide. Computational perturbations were considered to discuss the modification behavior in addition to the studied Li, Na, and K metals. Optimization of the three doping systems was achieved followed by generating DOS and electronic band structure maps. A dynamic simulation was performed with temperature over 2000 k: the presence of the metal on the surface and prediction of its ZrO2 inclusion leading to access adsorption behavior, besides generating predictive designed models described the adsorption affinity on the solid-state surface. It cannot be neglected the importance of various metals as a main role in chemotherapy. Molecular docking investigation was considered to predict the binding behavior of the studied metal ZrO2 carrier system as an anticancer agent. Also, docking affinity was helpful in comparing the active sites binding for the studied metals, resulting in a notable binding affinity for both Li- and Na-zirconia incorporation. METHODS The program PWSCF, which is a component of the quantum ESPRESSO suite for quantum simulation of materials, was used to construct geometric systems. The generalized gradient approximation in the Perdew-Burke-Ernzerhof (GGA/PBE) function with D3 correction (Becke-Jonson damping) was applied to the exchange-correlation energy. As the last step in the DFT postulation and design, adsorption locator annealing was carried out on the convergent models using the Materials Studio simulation package. The main roles played by metal atoms are in protein binding and the suppression of bio-active regions. For the docking process, the protein was produced using AutoDock 4.2 and Discovery Studio software in accordance with the usual methodology. Chimera and Discovery Studio were used to examine the docking data that was processed after generating specific grid box dimensions for 7BTN.
Collapse
Affiliation(s)
- Ali Abdullah Issa
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hiba H Ibraheem
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Doaa S El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Baghdad Street, Moharam Bey, P.O. Box 21511, Alexandria, Egypt.
| |
Collapse
|
28
|
Abdelmessih R, Xu J, Hung FR, Auguste DT. Integration of an LPAR1 Antagonist into Liposomes Enhances Their Internalization and Tumor Accumulation in an Animal Model of Human Metastatic Breast Cancer. Mol Pharm 2023; 20:5500-5514. [PMID: 37844135 PMCID: PMC10631474 DOI: 10.1021/acs.molpharmaceut.3c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Lysophosphatidic acid receptor 1 (LPAR1) is elevated in breast cancer. The deregulation of LPAR1, including the function and level of expression, is linked to cancer initiation, progression, and metastasis. LPAR1 antagonists, AM095 or Ki16425, may be effective therapeutic molecules, yet their limited water solubility hinders in vivo delivery. In this study, we report on the synthesis of two liposomal formulations incorporating AM095 or Ki16425, embedded within the lipid bilayer, as targeted nanocarriers for metastatic breast cancer (MBC). The data show that the Ki16425 liposomal formulation exhibited a 50% increase in internalization by MBC mouse epithelial cells (4T1) and a 100% increase in tumor accumulation in a mouse model of MBC compared with that of a blank liposomal formulation (control). At the same time, normal mouse epithelial cells (EpH-4Ev) internalized the Ki16425 liposomal formulation 25% lesser than the control formulation. Molecular dynamics simulations show that the integration of AM095 or Ki16425 modified the physical and mechanical properties of the lipid bilayer, making it more flexible in these liposomal formulations compared with liposomes without drug. The incorporation of an LPAR1 antagonist within a liposomal drug delivery system represents a viable therapeutic approach for targeting the LPA-LPAR1 axis, which may hinder the progression of MBC.
Collapse
Affiliation(s)
- Rudolf
G. Abdelmessih
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jiaming Xu
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
29
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
30
|
Mdlovu NV, Juang RS, Weng MT, Lin KS. Green synthesis and characterization of silicate nanostructures coated with Pluronic F127/gelatin for triggered drug delivery in tumor microenvironments. Int J Biol Macromol 2023; 251:126337. [PMID: 37586620 DOI: 10.1016/j.ijbiomac.2023.126337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Thermo-/pH-sensitive nanocomposites based on mesoporous silicate MCM-41 (MSNCs) derived from rice husk ash were synthesized and characterized. MSNCs were coated with thermo-/pH-sensitive Pluronic® F127 and gelatin to form MSNCs@gp nanocomposites, serving as carriers for controlled release of the anticancer drug doxorubicin (Dox). The in vitro and in vivo antitumor efficacy of MSNCs@gp-Dox against liver cancer was evaluated. Fourier-transform infrared (FTIR) spectra confirmed the silica nature of MSNCs@gp by detecting the Si-O-Si group. Under acidic microenvironments (pH 5.4) and 42 °C, MSNCs@gp-Dox exhibited significantly higher Dox release (47.33 %) compared to physiological conditions. Thermo-/pH-sensitive drug release (47.33 %) was observed in simulated tumor environments. The Makoid-Banakar model provided the best fit at pH 7.4 and 37 °C with a mean squared error of 0.4352, an Akaike Information Criterion of 15.00, and a regression coefficient of 0.9972. Cytotoxicity tests have demonstrated no significant toxicity in HepG2 cells treated with various concentrations of MSNCs@gp, while MSNCs@gp-Dox induced considerable cell apoptosis. In vivo studies in nude mice revealed effective suppression of liver cancer growth by MSNCs@gp-Dox, indicating high pharmaceutical efficacy. The investigated MSNCs@gp-based drug delivery system shows promise for liver cancer therapy, offering enhanced treatment efficiency with minimal side effects.
Collapse
Affiliation(s)
- Ndumiso Vukile Mdlovu
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Guishan, Taoyuan 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital Linkou, Taoyuan 33305, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100233, Taiwan; Department of Medical Research, National Taiwan University Hospital Hsinchu Branch, Hsinchu 302, Taiwan.
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 32003, Taiwan.
| |
Collapse
|
31
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
32
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
33
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
34
|
Albuquerque T, Neves AR, Paul M, Biswas S, Vuelta E, García-Tuñón I, Sánchez-Martin M, Quintela T, Costa D. A Potential Effect of Circadian Rhythm in the Delivery/Therapeutic Performance of Paclitaxel-Dendrimer Nanosystems. J Funct Biomater 2023; 14:362. [PMID: 37504857 PMCID: PMC10381694 DOI: 10.3390/jfb14070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient's circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1-the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Milan Paul
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Elena Vuelta
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Ignacio García-Tuñón
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martin
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
35
|
Girigoswami A, Girigoswami K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes (Basel) 2023; 14:1370. [PMID: 37510275 PMCID: PMC10379962 DOI: 10.3390/genes14071370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearance of the drugs from circulation before reaching the tumor site, the resistance of cancer cells to radiation, and over-sensitization of normal cells to radiation. Other treatment modalities include gene therapy, immunological checkpoint inhibitors, drug repurposing, and in situ cryo-immune engineering (ICIE) strategy. Nanotechnology has come to the rescue to overcome many shortfalls of conventional therapies. Some of the nano-formulated chemotherapeutic drugs, as well as nanoparticles and nanostructures with surface modifications, have been used for effective cancer cell killing and radio sensitization, respectively. Nano-enabled drug delivery systems act as cargo to deliver the sensitizer molecules specifically to the tumor cells, thereby enabling the radiation therapy to be more effective. In this review, we have discussed the different conventional chemotherapies and radiation therapies used for inhibiting lung cancer. We have also discussed the improvement in chemotherapy and radiation sensitization using nanoparticles.
Collapse
Affiliation(s)
- Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai 603103, India
| |
Collapse
|
36
|
Kumar P, Kim SH, Yadav S, Jo SH, Yoo S, Park SH, Lim KT. Redox-Responsive Core-Cross-Linked Micelles of Miktoarm Poly(ethylene oxide)- b-poly(furfuryl methacrylate) for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12719-12734. [PMID: 36848457 DOI: 10.1021/acsami.2c21152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physiological instability of nanocarriers, premature drug leakage during blood circulation, and associated severe side effects cause compromised therapeutic efficacy, which have significantly hampered the progress of nanomedicines. The cross-linking of nanocarriers while keeping the effectiveness of their degradation at the targeted site to release the drug has emerged as a potent strategy to overcome these flaws. Herein, we have designed novel (poly(ethylene oxide))2-b-poly(furfuryl methacrylate) ((PEO2K)2-b-PFMAnk) miktoarm amphiphilic block copolymers by coupling alkyne-functionalized PEO (PEO2K-C≡H) and diazide-functionalized poly(furfuryl methacrylate) ((N3)2-PFMAnk) via click chemistry. (PEO2K)2-b-PFMAnk self-assembled to form nanosized micelles (mikUCL) with hydrodynamic radii in the range of 25∼33 nm. The hydrophobic core of mikUCL was cross-linked by a disulfide-containing cross-linker using the Diels-Alder reaction to avoid unwanted leakage and burst release of a payload. As expected, the resulting core-cross-linked (PEO2K)2-b-PFMAnk micelles (mikCCL) exhibited superior stability under a normal physiological environment and were de-cross-linked to rapidly release doxorubicin (DOX) upon exposure to a reduction environment. The micelles were compatible with HEK-293 normal cells, while DOX-loaded micelles (mikUCL/DOX and mikCCL/DOX) induced high antitumor activity in HeLa and HT-29 cells. mikCCL/DOX preferentially accumulated at the tumor site and was more efficacious than free DOX and mikUCL/DOX for tumor inhibition in HT-29 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seong Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
37
|
Arslan FB, Öztürk K, Tavukçuoğlu E, Öztürk SC, Esendağlı G, Çalış S. A novel combination for the treatment of small cell lung cancer: Active targeted irinotecan and stattic co-loaded PLGA nanoparticles. Int J Pharm 2023; 632:122573. [PMID: 36592892 DOI: 10.1016/j.ijpharm.2022.122573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Polymeric nanoparticles are widely used drug delivery systems for cancer treatment due to their properties such as ease of passing through biological membranes, opportunity to modify drug release, specifically targeting drugs to diseased areas, and potential of reducing side effects. Here, we formulated irinotecan and Stattic co-loaded PLGA nanoparticles targeted to small cell lung cancer. Nanoparticles were successfully conjugated with CD56 antibody with a conjugation efficiency of 84.39 ± 1.01%, and characterization of formulated nanoparticles was conducted with in-vitro and in-vivo studies. Formulated particles had sizes in the range of 130-180 nm with PDI values smaller than 0.3. Encapsulation and active targeting of irinotecan and Stattic resulted in increased cytotoxicity and anti-cancer efficiency in-vitro. Furthermore, it was shown with ex-vivo biodistribution studies that conjugated nanoparticles were successfully targeted to CD56-expressing SCLC cells and distributed mainly to tumor tissue and lungs. Compliant with our hypothesis and literature, the STAT3 pathway was successfully inhibited with Stattic solution and Stattic loaded nanoparticles. Additionally, intravenous injection of conjugated co-loaded nanoparticles resulted in decreased side effects and better anti-tumor activity than individual solutions of drugs in SCLC tumor-bearing mice. These results may indicate a new treatment option for clinically aggressive small cell lung cancer.
Collapse
Affiliation(s)
- Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100 Ankara, Turkiye
| | - Süleyman Can Öztürk
- Centre for Laboratory Animals Research and Application, Hacettepe University, Ankara, Turkiye
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100 Ankara, Turkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye.
| |
Collapse
|
38
|
Das KP, J C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1067144. [PMID: 36688144 PMCID: PMC9853978 DOI: 10.3389/fmedt.2022.1067144] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer is a life-threatening disease, resulting in nearly 10 million deaths worldwide. There are various causes of cancer, and the prognostic information varies in each patient because of unique molecular signatures in the human body. However, genetic heterogeneity occurs due to different cancer types and changes in the neoplasms, which complicates the diagnosis and treatment. Targeted drug delivery is considered a pivotal contributor to precision medicine for cancer treatments as this method helps deliver medication to patients by systematically increasing the drug concentration on the targeted body parts. In such cases, nanoparticle-mediated drug delivery and the integration of artificial intelligence (AI) can help bridge the gap and enhance localized drug delivery systems capable of biomarker sensing. Diagnostic assays using nanoparticles (NPs) enable biomarker identification by accumulating in the specific cancer sites and ensuring accurate drug delivery planning. Integrating NPs for cancer targeting and AI can help devise sophisticated systems that further classify cancer types and understand complex disease patterns. Advanced AI algorithms can also help in biomarker detection, predicting different NP interactions of the targeted drug, and evaluating drug efficacy. Considering the advantages of the convergence of NPs and AI for targeted drug delivery, there has been significantly limited research focusing on the specific research theme, with most of the research being proposed on AI and drug discovery. Thus, the study's primary objective is to highlight the recent advances in drug delivery using NPs, and their impact on personalized treatment plans for cancer patients. In addition, a focal point of the study is also to highlight how integrating AI, and NPs can help address some of the existing challenges in drug delivery by conducting a collective survey.
Collapse
|
39
|
Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14246137. [PMID: 36551622 PMCID: PMC9776798 DOI: 10.3390/cancers14246137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.
Collapse
|
40
|
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022; 14:2712. [PMID: 36559206 PMCID: PMC9784306 DOI: 10.3390/pharmaceutics14122712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.
Collapse
Affiliation(s)
- S. M. Shatil Shahriar
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Mitchell P. Matis
- Kansas City Internal Medicine Residency Program, HCA Healthcare, Overland Park, KS 66215, USA
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
41
|
Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv 2022; 29:664-678. [PMID: 35209786 PMCID: PMC8890514 DOI: 10.1080/10717544.2022.2039804] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Traditional anticancer treatments have several limitations, but cancer is still one of the deadliest diseases. As a result, new anticancer drugs are required for the treatment of cancer. The use of metal nanoparticles (NPs) as alternative chemotherapeutic drugs is on the rise in cancer research. Metal NPs have the potential for use in a wide range of applications. Natural or surface-induced anticancer effects can be found in metals. The focus of this review is on the therapeutic potential of metal-based NPs. The potential of various types of metal NPs for tumor targeting will be discussed for cancer treatment. The in vivo application of metal NPs for solid tumors will be reviewed. Risk factors involved in the clinical application of metal NPs will also be summarized.
Collapse
Affiliation(s)
- Jia-Jie Xu
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wan-Chen Zhang
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ya-Wen Guo
- Department of Head and Neck Surgery, Otolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
42
|
Mdlovu NV, Lin KS, Weng MT, Lin YS, Liu SY. Preparation and in-vitro/in-vivo evaluation of doxorubicin-loaded magnetic SBA-15 nanocomposites from rice husk for enhancing therapeutic efficacy. Colloids Surf B Biointerfaces 2022; 220:112923. [DOI: 10.1016/j.colsurfb.2022.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
43
|
Sharifi S, Dalir Abdolahinia E, Ghavimi MA, Dizaj SM, Aschner M, Saso L, Khan H. Effect of Curcumin-Loaded Mesoporous Silica Nanoparticles on the Head and Neck Cancer Cell Line, HN5. Curr Issues Mol Biol 2022; 44:5247-5259. [PMID: 36354669 PMCID: PMC9688994 DOI: 10.3390/cimb44110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin is an active ingredient isolated from Curcuma longa. It has several pharmacological effects, including anticancer, anti-inflammatory, and antioxidant effects. Due to its low bioavailability, chemical structure instability, and easy oxidation, the application of curcumin has been limited. In this study, to overcome these limitations, curcumin-loaded mesoporous silica nanoparticles (Cur-MSN) were prepared, and the anticancerous effect of Cur-MSNs on head and neck cancer cells, HN5, was investigated. Transmission electron microscopy (TEM) revealed rod-shaped mesoporous nanoparticles with average particle size smaller than 100 nm. Higher cytotoxicity of Cur-MSNs was seen in treated cancer cells compared with free curcumin. The expression of Bcl-2 was significantly reduced in the presence of Cur-MSNs compared to the control (untreated HN5 cells) (p < 0.05). A 3.43-fold increase in the Bax/Bcl-2 ratio was seen in Cur-MSNs treated HN5 cells at the IC50. Cur-MSNs increased intracellular reactive oxygen species (ROS) production. Based on these novel results, we suggest that Cur-MSNs offer efficacy for cancer treatment and future studies should further characterize their properties in various experimental cancer models.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Ali Ghavimi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Solmaz Maleki Dizaj
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Correspondence: (S.M.D.); (H.K.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, Bronx, NY 10461, USA
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (S.M.D.); (H.K.)
| |
Collapse
|
44
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
45
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
46
|
Hamida RS, Ali MA, Almohawes ZN, Alahdal H, Momenah MA, Bin-Meferij MM. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics 2022; 14:pharmaceutics14102002. [PMID: 36297438 PMCID: PMC9609168 DOI: 10.3390/pharmaceutics14102002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae-mediated synthesis of nanoparticles (NPs) is an emerging nanobiotechnology that utilizes the biomolecular corona of microalgae as reducing and capping agents for NP fabrication. This study screened a novel microalgal strain for its potential to synthesize silver (Ag)-NPs and then assayed the biological activities of the NPs. Coelastrella aeroterrestrica strain BA_Chlo4 was isolated, purified, and morphologically and molecularly identified. Chemical composition of the algal extract was determined by GC-MS analysis. Ag-NPs were biosynthesized by C. aeroterrestrica BA_Chlo4 (C@Ag-NPs) and characterized using various techniques. Antiproliferative activity and the biocidal effect of C@Ag-NPs, C. aeroterrestrica algal extract, and chemically synthesized Ag-NPs (Ch@Ag-NPs) were explored, and the scavenging activity of C@Ag-NPs against free radicals was investigated. C@Ag-NPs were hexagonal, with a nanosize diameter of 14.5 ± 0.5 nm and a maximum wavelength at 404.5 nm. FTIR and GC-MS analysis demonstrated that proteins and polysaccharide acted as capping and reducing agents for C@Ag-NPs. X-ray diffraction, energy diffraction X-ray, and mapping confirmed the crystallinity and natural structure of C@Ag-NPs. The hydrodynamic diameter and charge of C@Ag-NPs was 28.5 nm and −33 mV, respectively. C@Ag-NPs showed significant anticancer activity towards malignant cells, with low toxicity against non-cancerous cells. In addition, C@Ag-NPs exhibited greater antioxidant activity and inhibitory effects against Gram-positive and -negative bacteria compared with the other tested treatments. These findings demonstrate, for first time, the potential of a novel strain of C. aeroterrestrica to synthesize Ag-NPs and the potent antioxidant, anticancer, and biocidal activities of these NPs.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hadil Alahdal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Histopathology Unit, Research Department, Health Sciences Research Center (HSRC), Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence:
| |
Collapse
|
47
|
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022; 23:ijms231710068. [PMID: 36077466 PMCID: PMC9456313 DOI: 10.3390/ijms231710068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Correspondence:
| |
Collapse
|
48
|
Cui F, Liu J, Pang S, Li B. Recent Advance in Tumor Microenvironment-Based Stimuli-Responsive Nanoscale Drug Delivery and Imaging Platform. Front Pharmacol 2022; 13:929854. [PMID: 35935835 PMCID: PMC9354407 DOI: 10.3389/fphar.2022.929854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the development, progression, and metastasis of cancer, and the extremely crucial feature is hypoxic and acidic. Cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), mesenchymal cells, blood vessels, and interstitial fluid are widely recognized as fundamentally crucial hallmarks for TME. As nanotechnology briskly boomed, the nanoscale drug delivery and imaging platform (NDDIP) emerged and has attracted intensive attention. Based on main characteristics of TME, NDDIP can be classified into pH-sensitive delivery and imaging platforms, enzyme-sensitive delivery and imaging platforms, thermo-sensitive delivery and imaging platforms, redox-sensitive delivery and imaging platforms, and light-sensitive delivery and imaging platforms. Furthermore, imageology is one of the significant procedures for disease detection, image-guided drug delivery, and efficacy assessment, including magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), and fluorescence imaging. Therefore, the stimuli-responsive NDDIP will be a versatile and practicable tumor disease diagnostic procedure and efficacy evaluation tool. In this review article, we mainly introduce the characteristics of TME and summarize the progress of multitudinous NDDIP as well as their applications.
Collapse
Affiliation(s)
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | | | - Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Manouchehri F, Iranpanah S. Thioguanine adsorption on the γ- graphyne and its boron nitride analogue as promising drug delivery system: Electronic study via DFT. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Khella KF, Abd El Maksoud AI, Hassan A, Abdel-Ghany SE, Elsanhoty RM, Aladhadh MA, Abdel-Hakeem MA. Carnosic Acid Encapsulated in Albumin Nanoparticles Induces Apoptosis in Breast and Colorectal Cancer Cells. Molecules 2022; 27:molecules27134102. [PMID: 35807348 PMCID: PMC9268188 DOI: 10.3390/molecules27134102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.
Collapse
Affiliation(s)
- Katren F. Khella
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| | - Ahmed I. Abd El Maksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
- Correspondence: (A.H.); (M.A.A.)
| | - Shaimaa E. Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt;
| | - Rafaat M. Elsanhoty
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt;
| | - Mohammed Abdullah Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.H.); (M.A.A.)
| | - Mohamed A. Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza 3236101, Egypt; (K.F.K.); (A.I.A.E.M.); (M.A.A.-H.)
| |
Collapse
|