1
|
Algabar FAA, Ahmed DS, Abbod LS, Al-Obaidi MA. Antibacterial Synergy: Assessing the Impact of Nano Zirconium Oxide Particles in Combination with Selected Antibiotics on Escherichia coli and Klebsiella pneumoniae Isolates from Urinary Tract Infections. Indian J Microbiol 2024; 64:1894-1902. [PMID: 39678966 PMCID: PMC11645383 DOI: 10.1007/s12088-024-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/24/2024] [Indexed: 12/17/2024] Open
Abstract
Research for novel compounds that may block bacterial development has continued and prompted by antibiotic-resistant bacteria. The expenses of community for health care as a result of antibiotic resistance has indeed been remarkable during the last decades and demand immediate of medical attention. Consequently, this research presents the antibacterial effect of genuine metal oxide nanoparticles against Escherichia coli (E. coli) and Klebsiella pneumoniae that have been isolated from urinary tract infection patients. This is because metal oxide nanomaterials have already been utilised a compromise with some of its comprehensive implementations throughout the pharmaceutical and biological disciplines of nano-biotechnology. The biological activity of zirconium oxide (ZrO2) nanoparticles against bacteria is investigated using agar well diffusion approach. The antibacterial efficiency of nanoparticles on E. coli and Klebsiella pneumoniae using both qualitative and quantitative assessment approaches is appraised. Specifically, an aseptic technique is used to collect fifty urine samples into sterile tubes. To inoculate the patients' midstream urine on both blood agar and MacConkey agar plates, the direct streaking approach is employed. Scanning electron microscopy (SEM) and X-Ray diffraction (XRD) techniques are used to signify the physical features nanoparticle including shape and size. The identified cubic components of SEM and XRD techniques indicate the existence of ZrO2 nanoparticles and magnetic nanoparticles of particle size ranges between 5 to 50 nm. According to the data, ZrO2 nanoparticles have a bacteriostatic effect at 0.1 mg/ml with an absorption of 0.2 and a bactericidal effect at 2 mg/ml with an absorption of 0.007 on E. col isolates. Additionally, ZrO2 nanoparticles exhibit bacteriostatic (at 0.1 mg/ml with absorption of 0.3) and bactericidal (at 2 mg/ml with absorption of 0.001) effects on Klebsiella pneumoniae isolates. Among all the antibiotics utilised, gentamicin shows the lowest rate of resistance, suggesting that it is more effective against E. coli and Klebsiella pneumoniae when ZrO2 is presented.
Collapse
Affiliation(s)
| | - Dhea Sadi Ahmed
- Technical Institute of Baquba, Middle Technical University, Baquba, 32001 Iraq
| | - Lamiaa Saoud Abbod
- Technical Institute of Baquba, Middle Technical University, Baquba, 32001 Iraq
| | - Mudhar A. Al-Obaidi
- Technical Institute of Baquba, Middle Technical University, Baquba, 32001 Iraq
- Technical Instructor Training Institute, Middle Technical University, Baghdad, 10074 Iraq
| |
Collapse
|
2
|
Niazi FH, Luddin N, Alghawazi AM, Al Sebai L, Alqerban A, Alqahtani YM, Barakat A, Samran A, Noushad M. Aluminum zirconate nanoparticles in etch and rinse adhesive to caries affected dentine: An in-vitro scanning electron microscopy, elemental distribution, antibacterial, degree of conversion and micro-tensile bond strength assessment. Microsc Res Tech 2024; 87:1955-1964. [PMID: 38581370 DOI: 10.1002/jemt.24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, μTBS, and antimicrobial efficacy. The current research involved a wide-ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, μTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three-step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. μTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The μTBS and S.mutans survival rates comparison among different groups was performed using one-way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest μTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch-and-rinse adhesive exhibited enhanced antibacterial activity and micro-tensile bond strength (μTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. RESEARCH HIGHLIGHTS: 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.
Collapse
Affiliation(s)
- Fayez Hussain Niazi
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Norhayati Luddin
- Department of Restorative Dentistry, School of Dental Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Leen Al Sebai
- College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Ali Alqerban
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ali Barakat
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Abdulaziz Samran
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Mohammed Noushad
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Bin Abbooud AlQhtani FA, Abdullah Kamran M, Sainudeen S, Albalawi M, Hani Murad M, Kamal Abdelrahim R, Gaafar SS, Ayman Alkhateeb F, Niazi FH. Modified Hybrid Hydroxyapatite-Silver Nanoparticles Activated via a Blue Light Source in Various Concentrations in Two-Step Self-Etch Adhesive to Caries-Affected Primary Dentin. Photobiomodul Photomed Laser Surg 2024; 42:550-560. [PMID: 39178410 DOI: 10.1089/photob.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Aims: To evaluate hydroxyapatite-silver (HA-Ag) hybrid nanoparticles (NPs), as an antibacterial agent when integrated in self-etch (SE) adhesive. Blue light activated HA-Ag hybrid NP incorporation on mechanical properties, degree of conversion (DC), and microtensile bond strength (μTBS). Method: Eighty primary molar teeth have carious lesions reaching the dentin but not involving the pulp. The infected dentin was removed and carious-affected dentin (CAD) was preserved. Forty samples were inoculated with Streptococcus mutans. All primary teeth (n = 80) were allocated into four groups based on the incorporation of HA-Ag hybrid NPs in different concentrations (0%, 1%, 5%, and 10%). Group 1: 0% HA-Ag hybrid NPs + Clearfil SE bond primer, group 2: 1% HA-Ag hybrid NPs + Clearfil SE bond primer, group 3: 5 wt% HA-Ag NPs + Clearfil SE bond primer, and group 4: 10 wt% HA-Ag NPs + Clearfil SE bond primer. The survival rate assessment of S. mutans was conducted on 40 inoculated samples. On the remaining primary teeth (n = 40), Clearfil SE bonding agent was applied uniformly via a blue light source. The composite buildup was performed on the samples and μTBS and failure analysis assessed. Fourier transform infrared spectroscopy was performed to assess DC. Survival rates of S. mutans and μTBS among the tested groups were compared using ANOVA and Tukey post hoc analysis. Results: 10 wt % HA-Ag NPs + Clearfil SE bond primer exhibited the highest level of antibacterial efficacy (0.14 ± 0.02 CFU/mL) against S. mutans. The highest μTBS (18.38 ± 0.78 MPa) at the composite/CAD interface was in group 2 (1 wt % HA-Ag NPs + Clearfil SE bond primer + Clearfil SE bonding agent + activation with a blue light source). The highest DC was observed in the control group with Clearfil SE bond primer + Clearfil SE bonding agent + activation with a blue light source. Conclusion: 1 wt% HA-Ag hybrid NPs showed enhanced antibacterial effectiveness, DC, and bond strength of the SE adhesive to the primary CAD.
Collapse
Affiliation(s)
- Faisal Ali Bin Abbooud AlQhtani
- Consultant in Pediatric Dentistry, Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Abdullah Kamran
- Department of Pediatric Dentistry and Orthodontic Sciences College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Shan Sainudeen
- Department of Restorative Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Malak Albalawi
- College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | | | - Rawa Kamal Abdelrahim
- Department of Preventive Dental Sciences College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Sarah Salah Gaafar
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | | | - Fayez Hussain Niazi
- Department of Restorative and Prosthetic Dentistry, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Li LJ, Mu WL, Tian YQ, Yu WD, Li LY, Yan J, Liu C. Ag 1+ incorporation via a Zr 4+-anchored metalloligand: fine-tuning catalytic Ag sites in Zr/Ag bimetallic clusters for enhanced eCO 2RR-to-CO activity. Chem Sci 2024; 15:7643-7650. [PMID: 38784741 PMCID: PMC11110141 DOI: 10.1039/d3sc07005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/24/2024] [Indexed: 05/25/2024] Open
Abstract
Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.
Collapse
Affiliation(s)
- Liang-Jun Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Lan-Yan Li
- China College of Science, Hunan University of Technology and Business Changsh 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
5
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Optimization of Antibacterial, Structures, and Thermal Properties of Alginate-ZrO2 Bionanocomposite by the Taguchi Method. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/7406168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Developing novel antibacterial chemicals is constantly necessary since bacterial resistance to antibiotics is an inevitable occurrence. This research aimed to find the ideal conditions for using antibacterial zirconia (ZrO2) NPs with polymer alginate nanocomposites. Using the Taguchi method, alginate biopolymer, zirconia NPs, and stirring time were utilized to construct nine nanocomposites. Analysis of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis), spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) indicated the development of nanocomposites with appropriate structural properties. Antibacterial efficacy against Streptococcus mutans (S. mutans) biofilm was the highest when the nanocomposite was formed under the circumstances of experiment 6 (zirconia 8 mg/ml, alginate 70 mg/ml, and 40 min stirring time). Alginate/zirconia bionanocomposites generated using the in situ technique proved efficient against S. mutans. Nanoparticles have a high surface-to-volume ratio and surface energy, which can cause them to agglomerate and make their antimicrobial effectiveness problematic. Using zirconia nanoparticles in an alginate polymer matrix in the form of nanocomposite can increase the stability of nanoparticles. Due to the advantageous antibacterial qualities of this bionanocomposite, it can be utilized in various medical materials and dental appliances.
Collapse
|
7
|
Ahmed AAA, Aldeen TS, Al-Aqil SA, Alaizeri ZM, Megahed S. Synthesis of Trimetallic (Ni-Cu)@Ag Core@Shell Nanoparticles without Stabilizing Materials for Antibacterial Applications. ACS OMEGA 2022; 7:37340-37350. [PMID: 36312413 PMCID: PMC9607666 DOI: 10.1021/acsomega.2c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
We report a simple method to prepare colloidal trimetallic (Ni-Cu)@Ag core@shell nanoparticles (NPs) without stabilizing materials. Experimental evidence was found for the successful synthesis of these NPs using X-ray diffraction (XRD), optical spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The presence of core metals (Ni and Cu) was confirmed by elemental analysis using a total reflection X-ray fluorescence (TXRF) analysis. In addition, the absorption spectra of the prepared samples exhibited broad bands compared to the bands of the monometallic NPs, indicating the formation of a core-shell nanostructure. The antibacterial activity of the trimetallic NPs was evaluated against three Gram-negative (Pseudomonas aeruginosa, Escherichia coli, and Salmonella) and two Gram-positive (Streptococcus and Staphylococcus aureus) bacteria on Mueller-Hinton agar. These NPs showed high inhibition of bacterial growth at the low sample concentrations used in this study compared to other nanomaterials. One of the interesting results of the current study is that the inhibition zone of Pseudomonas aeruginosa as a resistant bacterium was high for most NPs. These results make the prepared samples promising candidates for antibiotic material applications.
Collapse
Affiliation(s)
- Abdullah A. A. Ahmed
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar87246, Yemen
| | - Thana S. Aldeen
- Department
of Physics, Faculty of Science, Sana’a
University, Sanaa12544, Yemen
| | - Samar A. Al-Aqil
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - ZabnAllah M. Alaizeri
- Department
of Physics, Faculty of Education & Sciences, Al-Baydha University, Al-Baydha, Yemen
| | - Saad Megahed
- Department
of Physics, Faculty of Science, Al-Azhar
University, Cairo, Egypt
| |
Collapse
|
8
|
Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. Ag 2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals (Basel) 2022; 15:ph15080968. [PMID: 36015116 PMCID: PMC9415021 DOI: 10.3390/ph15080968] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
9
|
Nair Silva-Holguín P, de Jesús Ruíz-Baltazar Á, Yobanny Reyes-López S. Antimicrobial study of the Al2O3-Cu and Al2O3-Hydroxiapatite-Cu spheres. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ayanwale AP, Estrada-Capetillo BL, Reyes-López SY. Antifungal activity and cytotoxicity study of ZrO2-ZnO bimetallic nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Lu J, Wang Y, Shan X, Sun Z, Zhang X, Zhao Y, Hu Y, Sun E, Tian L. Synergistic enhancement effects of cobalt oxide doped silver oxide and porphyrin zinc on an electrochemiluminescence sensor for detection of glucose. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Silva-Holguín PN, Reyes-López SY. Alumina-Hydroxyapatite-Silver Spheres With Antibacterial Activity. Dose Response 2021; 19:15593258211011337. [PMID: 35185416 PMCID: PMC8851142 DOI: 10.1177/15593258211011337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Researchers are currently looking for materials that are stable, functional, aesthetic, and biocompatible without infections. Therefore, there is a great interest in obtaining a material that has a balance between aesthetic, biological, mechanical, and functional factors, which can be used as an infection control material. The addition of hydroxyapatite to alumina make highly bioactive scaffolds with mechanical strength. Biomedical applications require antibacterial properties; therefore, this idea leads to great interest in the development of new synthetic routes of ceramic biomaterials that allow the release of nanoparticles or metal ions. This investigation presents the obtention of alumina-hydroxyapatite spheres doped with silver nanoparticles with antibacterial effect against various Gram-positive and negative bacteria related to drug-resistance infections. The microstructural and spectroscopic studies demonstrate that the spheres exhibit a homogeneous structure and crystal hydroxyapatite and silver nanoparticles are observed on the surface. The antimicrobial susceptibility was verified with the agar diffusion and turbidimetry methods in Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. All bacteria used were susceptible to the alumina-hydroxyapatite-silver spheres even at lower silver concentration. The composites have a higher possibility for medical applications focused on the control of drug-resistance microorganisms.
Collapse
Affiliation(s)
- Pamela Nair Silva-Holguín
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| | - Simón Yobanny Reyes-López
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
| |
Collapse
|
13
|
Evaluation of Antifungal Activity by Mixed Oxide Metallic Nanocomposite against Candida spp. Processes (Basel) 2021. [DOI: 10.3390/pr9050773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High doses of antimicrobial agents are a huge threat due to the increasing number of pathogenic organisms that are becoming resistant to antimicrobial agents. This resistance has led to a search for alternatives. Therefore, this study presents the synthesis and characterization of ZrO2-Ag2O nanoparticles (NPs) by sol-gel. The NPs were analyzed by dynamic light scattering (DLS), UV-visible (UV-vis), Raman and scanning electron microscopy (SEM). The NPs were later evaluated for their antifungal effects against Candidaalbicans, Candida dubliniensis, Candida glabrata, and Candida tropicalis, using disc diffusion and microdilution methods, followed by the viability study. The DLS showed sizes for ZrO2 76 nm, Ag2O 50 nm, and ZrO2-Ag2O samples between 14 and 42 nm. UV-vis shows an absorption peak at 300 nm for ZrO2 and a broadband for Ag2O NPs. Raman spectra were consistent with factor group analysis predictions. SEM showed spherically shaped NPs. The antifungal activity result suggested that ZrO2-Ag2O NPs were effective against Candida spp. From the viability study, there was no significance difference in viability as a function of time and concentration on human mononuclear cells. This promising result can contribute toward the development of alternative therapies to treat fungal diseases in humans.
Collapse
|