1
|
Analysis of Immune and Inflammation Characteristics of Atherosclerosis from Different Sample Sources. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5491038. [PMID: 35509837 PMCID: PMC9060985 DOI: 10.1155/2022/5491038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Background Atherosclerosis is the predominant cause of cardiovascular diseases. Existing studies suggest that the development of atherosclerosis is closely related to inflammation and immunity, but whether there are differences and similarities between atherosclerosis occurring at different sites is still unknown. We elucidated the pathological characteristics of peripheral vascular diseases by using bioinformatic analyses on immune cells and inflammation-related gene expression in atherosclerotic arteries and plaques. Methods Eight data sets regarding atherosclerosis were downloaded from the Gene Expression Omnibus database. Human immune genes were obtained from the IMMPORT website. The samples were scored and divided into high- and low-immune groups. Then the samples were analysed using weighted gene co-expression network analysis, while the modules were analysed using functional enrichment. The protein–protein interaction network was constructed using the STRING and Cytoscape databases. The hub immune genes were screened, and the correlation between hub immune genes and immune cells was analysed. Results Immune cells and their functions were significantly different during atherosclerosis development. The infiltration proportion of immune cells was approximately similar in samples from different sources of patients with carotid atherosclerosis. However, the sensitivity of lower extremity atherosclerosis samples to immune cells is lower than that of carotid atherosclerosis samples.The samples from the plaque and artery were mainly infiltrated by macrophages, T cells and mast cells. After immune cells were assessed, resting NK cells, activated mast cells and M0 macrophages were found to be key immune cells in atherosclerosis and plaque formation. In addition, CCL4, TLR2, IL1B and PTPRC were considered to be immune marker genes in atherosclerosis development. Conclusion. Bioinformatic data analysis confirms the essential role of immune cells in cardiovascular diseases, and also indicates some differences of immune and inflammation characteristics of atherosclerosis between carotid and lower extremity arteries.
Collapse
|
2
|
Kim HS, Hashimoto T, Fischer K, Bernigaud C, Chosidow O, Yosipovitch G. Scabies itch: an update on neuroimmune interactions and novel targets. J Eur Acad Dermatol Venereol 2021; 35:1765-1776. [PMID: 33960033 DOI: 10.1111/jdv.17334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Frequently described as 'the worst itch' one can ever experience scabies itch is the hallmark of Sarcoptes scabiei mite infestation. Notably, the itchiness often persists for weeks despite scabicides therapy. The mechanism of scabies itch is not yet fully understood, and effective treatment modalities are still missing which can severely affect the quality of life. The aim of this review is to provide an overview of the scope of itch in scabies and highlight candidate mechanisms underlying this itch. We herein discuss scabies itch, with a focus on the nature, candidate underlying mechanisms and treatment options. We also synthesize this information with current understanding of the mechanisms contributing to non-histaminergic itch in other conditions. Itch is a major problem in scabies and can lead to grave consequences. We provide the latest insights on host-mite interaction, secondary microbial infection and neural sensitization with special emphasis on keratinocytes and mast cells to better understand the mechanism of itch in scabies. Also, the most relevant current modalities remaining under investigation that possess promising perspectives for scabies itch (i.e. protease-activated receptor-2 (PAR-2) inhibitor, Mas-related G protein-coupled receptor X2 (MRGPRX2) antagonist) are discussed. Greater understanding of these diverse mechanisms may provide a rational basis for the development of improved and targeted approaches to control itch in individuals with scabies.
Collapse
Affiliation(s)
- H S Kim
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - T Hashimoto
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - K Fischer
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - C Bernigaud
- Faculté de Santé de Créteil et Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France.,Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - O Chosidow
- Faculté de Santé de Créteil et Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France.,Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - G Yosipovitch
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 2015; 5:77-80. [PMID: 26856948 DOI: 10.1016/j.msard.2015.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
Autoimmunity is a disease that occurs when the body tissue is attacked by its own immune system. Multiple sclerosis (MS) is an autoimmune illness which triggers neurological progressive and persistent functions. MS is associated with an abnormal B-cell response and upregulation of T-cell reactivity against a multitude of antigens. Mast cells are the first line of the innate immune system and act by degranulating and secreting chemical mediators and cytokines. Their participation on the central nervous system has been recognized since the beginning of the last century. They have an important role in autoimmune disease, including MS where they mediate inflammation and demyelinization by presenting myelin antigens to T cells or disrupting the blood-brain barrier and permitting entry of inflammatory cells and cytokines. The participation of mast cells in MS is demonstrated by gene overexpression of chemical mediators and inflammatory cytokines. Here we report the relationship and involvement between mast cells and multiple sclerosis.
Collapse
Affiliation(s)
- P Conti
- Postgraduate, Medical School, University of Chieti-Pescara, Viale Unità dell'Italia 73, 66013 Chieti, Italy.
| | - D Kempuraj
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA.
| |
Collapse
|
4
|
Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Frydas A, Conti P. Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab. Int J Immunopathol Pharmacol 2014; 27:331-5. [PMID: 25280024 DOI: 10.1177/039463201402700303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mast cells (MCs) derive from a distinct precursor in the bone marrow and are predominantly found in tissues at the interface between the host and the external environment where they can secrete mediators without overt degranulation. Mast cells mature under local tissue microenvironmental factors and are necessary for the development of allergic reactions, through crosslinking of their surface receptors for IgE (FcεRI), leading to degranulation and the release of vasoactive, pro-inflammatory and nociceptive mediators that include histamine, pro-inflammatory and anti-inflammatory cytokines and proteolytic enzymes. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demylination within the central nervous system. MCs are involved in the pathogenesis of MS by generating various vasoactive mediators and cytokines and participate in the destruction of the myelin sheath and the neuronal cells. The process of the development of demyelinating plaques in MS is probably linked with the rupture of the blood-brain barrier by MC products. The effects of natalizumab, which is a very effective drug in reducing the annualized relapse rate and other relapse-based endpoints, are discussed. Here, we report the relationship between MCs and MS.
Collapse
Affiliation(s)
- S K Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, Macedonia, Greece
| | - A Saggini
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - G Cerulli
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - A Caraffa
- Orthopedic Division, University of Perugia, Perugia, Italy
| | - P Antinolfi
- Orthopedic Division, University of Perugia, Perugia, Italy
| | - A Pantalone
- Orthopedic Division, University of Chieti-Pescara, Chieti, Italy
| | - M Rosati
- Gynecology Clinic, Pescara Hospital, Pescara, Italy
| | - M Tei
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - A Speziali
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - R Saggini
- Department of Neurosciences and Imaging, Faculty of Medicine and Surgery, G. d'Annunzio University Chieti-Pescara, Chieti, Italy
| | - A Frydas
- Aristotle University of Thessaloniki, Macedonia, Greece
| | - P Conti
- Immunology Division, Medical School, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|