1
|
Harrison S, Lennon R, Holly J, Higgins JPT, Gardner M, Perks C, Gaunt T, Tan V, Borwick C, Emmet P, Jeffreys M, Northstone K, Rinaldi S, Thomas S, Turner SD, Pease A, Vilenchick V, Martin RM, Lewis SJ. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control 2017; 28:497-528. [PMID: 28361446 PMCID: PMC5400803 DOI: 10.1007/s10552-017-0883-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
Abstract
PURPOSE To establish whether the association between milk intake and prostate cancer operates via the insulin-like growth factor (IGF) pathway (including IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3). METHODS Systematic review, collating data from all relevant studies examining associations of milk with IGF, and those examining associations of IGF with prostate cancer risk and progression. Data were extracted from experimental and observational studies conducted in either humans or animals, and analyzed using meta-analysis where possible, with summary data presented otherwise. RESULTS One hundred and seventy-two studies met the inclusion criteria: 31 examining the milk-IGF relationship; 132 examining the IGF-prostate cancer relationship in humans; and 10 animal studies examining the IGF-prostate cancer relationship. There was moderate evidence that circulating IGF-I and IGFBP-3 increase with milk (and dairy protein) intake (an estimated standardized effect size of 0.10 SD increase in IGF-I and 0.05 SD in IGFBP-3 per 1 SD increase in milk intake). There was moderate evidence that prostate cancer risk increased with IGF-I (Random effects meta-analysis OR per SD increase in IGF-I 1.09; 95% CI 1.03, 1.16; n = 51 studies) and decreased with IGFBP-3 (OR 0.90; 0.83, 0.98; n = 39 studies), but not with other growth factors. The IGFBP-3 -202A/C single nucleotide polymorphism was positively associated with prostate cancer (pooled OR for A/C vs. AA = 1.22; 95% CI 0.84, 1.79; OR for C/C vs. AA = 1.51; 1.03, 2.21, n = 8 studies). No strong associations were observed for IGF-II, IGFBP-1 or IGFBP-2 with either milk intake or prostate cancer risk. There was little consistency within the data extracted from the small number of animal studies. There was additional evidence to suggest that the suppression of IGF-II can reduce tumor size, and contradictory evidence with regards to the effect of IGFBP-3 suppression on tumor progression. CONCLUSION IGF-I is a potential mechanism underlying the observed associations between milk intake and prostate cancer risk.
Collapse
Affiliation(s)
- Sean Harrison
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Rosie Lennon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Jeff Holly
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Julian P T Higgins
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Mike Gardner
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Claire Perks
- IGFs & Metabolic Endocrinology Group, School of Clinical Sciences at North Bristol, Southmead Hospital, BS10 5NB, Bristol, UK
| | - Tom Gaunt
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Vanessa Tan
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Cath Borwick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Cardiff University, Cardiff, UK
| | - Pauline Emmet
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mona Jeffreys
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Sabina Rinaldi
- International Agency for Research on Cancer, Lyon, France
| | - Stephen Thomas
- School of Oral and Dental Sciences,, University of Bristol, Bristol, UK
| | | | - Anna Pease
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vicky Vilenchick
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, BS2 8AE, Bristol, UK
| | - Sarah J Lewis
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Santa Mina D, Connor MK, Alibhai SMH, Toren P, Guglietti C, Matthew AG, Trachtenberg J, Ritvo P. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: A randomized study. Can Urol Assoc J 2013; 7:E692-8. [PMID: 24282459 DOI: 10.5489/cuaj.235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) has significant deleterious effects on body composition that may be accompanied by unfavourable changes in adipokine levels. While exercise has been shown to improve a number of side effects associated with ADT for prostate cancer, no studies have assessed the effect of exercise on adiponectin and leptin levels, which have been shown to alter the mitogenic environment. METHODS Twenty-six men with prostate cancer treated with ADT were randomized to home-based aerobic exercise training or resistance exercise training for 24 weeks. Adiponectin, leptin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) were analyzed by ELISA (enzyme-linked immunosorbent assay), in addition to physical activity volume, peak aerobic capacity, and anthropometric measurements, at baseline, 3 months and 6 months. RESULTS Resistance exercise significantly reduced IGF-1 after 3 months (p = 0.019); however, this change was not maintained at 6 months. At 6 months, IGFBP-3 was significantly increased compared to baseline for the resistance training group (p = 0.044). In an exploratory analysis of all exercisers, favourable changes in body composition and aerobic fitness were correlated with favourable levels of leptin, and favourable leptin:adiponectin and IGF-1:IGFBP-3 ratios at 3 and 6 months. CONCLUSIONS Home-based exercise is correlated with positive changes in adipokine levels and the IGF-axis that may be related to healthy changes in physical fitness and body composition. While the improvements of adipokine markers appear to be more apparent with resistance training compared to aerobic exercise, these findings must be considered cautiously and require replication from larger randomized controlled trials to clarify the role of exercise on adipokines and IGF-axis proteins for men with prostate cancer.
Collapse
Affiliation(s)
- Daniel Santa Mina
- Princess Margaret Cancer Centre, Toronto, ON; ; York University, Toronto, ON; ; University of Guelph-Humber, Toronto, ON
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Predictors of variation in serum IGF1 and IGFBP3 levels in healthy African American and white men. J Natl Med Assoc 2009; 101:711-6. [PMID: 19634593 DOI: 10.1016/s0027-9684(15)30981-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Individual variation in circulating insulinlike growth factor-1 (IGF1) and its major binding protein, insulinlike growth factor binding protein-3 (IGFBP3), have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. METHODS Multiple linear regression models were used to determine the extent to which sociodemographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3-202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. RESULTS Predictors of serum IGF1, IGFBP3, and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, were explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least 1 IGF1 (CA)19 repeat allele and a high body mass index explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. CONCLUSION If successfully replicated in larger studies, these findings would add to recent evidence, suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites.
Collapse
|
4
|
Rowlands MA, Gunnell D, Harris R, Vatten LJ, Holly JMP, Martin RM. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer 2009; 124:2416-29. [PMID: 19142965 DOI: 10.1002/ijc.24202] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insulin-like growth factors (IGF-I, IGF-II) and their binding proteins (IGFBP-1-6) play a key role in cell proliferation, differentiation and apoptosis, suggesting possible involvement in carcinogenesis. Several epidemiological studies show associations of IGFs with prostate cancer. We searched the published literature for all studies relating levels of IGFs or IGFBPs with prostate cancer. We performed random effects meta-analysis to calculate summary odds ratios. The number of studies (prostate cancer cases) included in each meta-analysis were 42 (7,481) IGF-I; 10 (923) IGF-II; 3 (485) IGFBP-1; 5 (577) IGFBP-2; 29 (6,541) IGFBP-3 and 11 (3,545) IGF-1:IGFBP-3 ratio. The pooled odds ratios (95% confidence intervals) per standard deviation increase in peptide were: IGF-I, OR = 1.21 (1.07, 1.36); IGF-II, OR = 1.17 (0.93, 1.47); IGFBP-1, OR = 1.21 (0.62, 2.33); IGFBP-2, OR = 1.18 (0.90, 1.54); IGFBP-3, OR = 0.88 (0.79, 0.98); IGFI:IGFBP-3 ratio, OR = 1.10 (0.97, 1.24). For all exposures, there was substantial heterogeneity (all I(2) > 75%), partly explained by study design: the magnitude of associations was smaller in prospective vs. retrospective studies, and for IGFBP-3, the inverse association with prostate cancer risk was seen in retrospective but not prospective studies. There was weak evidence that associations of IGF-I and IGFBP-3 with prostate cancer were stronger for advanced disease. Our meta-analysis confirms that raised circulating lGF-I is positively associated with prostate cancer risk. Associations between IGFBP-3 and prostate cancer were inconsistent, and there was little evidence for a role of IGF-II, IGFBP-1 or IGFBP-2 in prostate cancer risk.
Collapse
Affiliation(s)
- Mari-Anne Rowlands
- Department of Social Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
5
|
Kim KH, Dobi A, Shaheduzzaman S, Gao CL, Masuda K, Li H, Drukier A, Gu Y, Srikantan V, Rhim JS, Srivastava S. Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer Prostatic Dis 2006; 10:30-8. [PMID: 17075604 DOI: 10.1038/sj.pcan.4500915] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of prostate epithelial cell lines stably expressing wild-type (wt) or mutant (mt) androgen receptor (AR) are derived from metastatic prostate cancers. Therefore, the wt AR-expressing RC-165N/human telomerase reverse transcriptase (hTERT) cell line derived from the benign prostate tissue of an African-American patient provides a unique opportunity to assess the functional status of AR in a cellular context not studied before. Although androgen-induced expression of known androgen responsive genes such as PMEPA1, and NDRG1 was observed in RC-165N/hTERT, this cell line expresses prostate-specific antigen (PSA) at significantly lower levels. Chromatin immunoprecipitation assay revealed androgen-dependent binding of AR to androgen response elements of PSA, PMEPA1 and NDRG1 genes. Similarities, as well as differences were noted in the expression of androgen responsive genes between RC-165N/hTERT and LNCaP cells. Comprehensive evaluations of AR functions in RC-165N/hTERT cells suggest that whereas some features of known AR functions are maintained in this benign prostatic tissue-derived cell line, other AR functions are not retained. Objective evaluations of similar cell lines will lead to the understanding of AR functions in prostate growth and differentiation.
Collapse
Affiliation(s)
- K-H Kim
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Meinbach DS, Lokeshwar BL. Insulin-like growth factors and their binding proteins in prostate cancer: Cause or consequence?☆. Urol Oncol 2006; 24:294-306. [PMID: 16818181 DOI: 10.1016/j.urolonc.2005.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 12/27/2005] [Accepted: 12/28/2005] [Indexed: 12/29/2022]
Abstract
Insulin-like growth factors (IGFs) promote growth and survival of many types of tumor cells. Epidemiologic studies have implicated carcinogenesis with high levels of IGFs in circulation or in tissues. The levels of IGF binding proteins (IGFBPs) have been associated with reduced risk for prostate and other cancers. Experimental studies have implicated high levels of IGF-I directly and IGFBP-3 inversely in prostate cancer growth, survival, and progression. However, recent evidence suggests a much weaker association of IGF-I with prostate cancer development and a stronger antagonistic association of IGFBP-3 with prostate cancer progression. Considering the clonal heterogeneity and unpredictable progression pattern of prostate cancer, the role of any single growth factor or its regulator (IGFBP) as a single determining factor is limited. This review is a critical appraisal of the role of IGFs, IGFBP, and IGF-I receptor (the IGF axis) in both experimental and clinical prostate cancer genesis and progression.
Collapse
Affiliation(s)
- David S Meinbach
- Department of Urology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | |
Collapse
|
7
|
Gennigens C, Menetrier-Caux C, Droz JP. Insulin-Like Growth Factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 2006; 58:124-45. [PMID: 16387509 DOI: 10.1016/j.critrevonc.2005.10.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/30/2005] [Accepted: 10/07/2005] [Indexed: 11/28/2022] Open
Abstract
There is abundant in vitro, animal and epidemiologic evidence to suggest that the Insulin-Like Growth Factor (IGF) family is a multi-component network of molecules which is involved in the regulation of both physiological and pathological growth processes in prostate. The IGF family plays a key role in cellular metabolism, differentiation, proliferation, transformation and apoptosis, during normal development and malignant growth. This family also seem essential in prostate cancer bone metastases, angiogenesis and androgen-independent progression. Therapeutic alternatives in men with progressive prostate cancer after androgen ablation are very limited. More effective therapies are needed for these patients. Pharmacologic interventions targeting the IGF family are being devised. Such strategies include reduction of IGF-I levels (growth hormone-releasing hormone antagonists, somatostatin analogs), reduction of functional IGF-I receptor levels (antisense oligonucleotides, small interfering RNA), inhibition of IGF-IR and its signalling (monoclonal antibodies, small-molecule tyrosine kinase inhibitors) and Insulin-Like Growth Factor Binding Proteins.
Collapse
Affiliation(s)
- C Gennigens
- Department of Medecine, Division of Hematology/Oncology, University Hospital of Liege, Belgium.
| | | | | |
Collapse
|
8
|
Friedrichsen DM, Hawley S, Shu J, Humphrey M, Sabacan L, Iwasaki L, Etzioni R, Ostrander EA, Stanford JL. IGF-I and IGFBP-3 polymorphisms and risk of prostate cancer. Prostate 2005; 65:44-51. [PMID: 15800934 DOI: 10.1002/pros.20259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Insulin-like growth factor-I (IGF-I) is a potent mitogen for both normal and malignant prostate epithelial cells. The majority of circulating IGF-I is bound in a complex with IGF binding protein-3 (IGFBP-3), which in turn limits IGF-I bioavailability. Multiple studies suggest that higher IGF-I and/or lower IGFBP-3 serum levels are positively associated with prostate cancer risk. Several polymorphisms within the IGF-I and IGFBP-3 coding regions have been associated with increased serum protein levels. METHODS To ascertain the potential relationship between serum levels and polymorphism, and prostate cancer risk, we investigated the role of two polymorphisms the IGF-I cytosine-adenosine (CA)-repeat and the IGFBP-3 Ala32Gly, and prostate cancer in a population-based, case-control, study of middle-aged men. RESULTS We found no significant association between the IGFBP-3 Ala32Gly polymorphism and prostate cancer risk, even though the presence of at least one Gly allele did correlate with increased serum levels of IGFBP-3. For IGF-I, more controls (42%) than cases (38%) were homozygous for 19-CA-repeats (odds ratio, OR = 0.85; 95% confidence interval (CI) = 0.66-1.09). After stratifying by disease characteristics, 19-CA-repeat homozygous men displayed a decreased risk of low-grade disease (OR = 0.50; 95% CI = 0.27-0.93), but no associations were observed with more aggressive features of disease. Additionally, there was no correlation between mean serum IGF-I protein levels and IGF-I genotype in controls. CONCLUSIONS Further evaluation of the IGF-I CA-repeat polymorphism and prostate cancer is necessary to determine if the modest risk reduction associated with the 19-CA-repeat homozygous state is observed in other study populations.
Collapse
Affiliation(s)
- Danielle M Friedrichsen
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL, Plymate SR. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 2005; 11:3065-74. [PMID: 15837762 DOI: 10.1158/1078-0432.ccr-04-1586] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The type I insulin-like growth factor receptor (IGF-IR) and its ligands have been shown to play a critical role in prostate carcinoma development, growth, and metastasis. Targeting the IGF-IR may be a potential treatment for prostate cancer. A fully human monoclonal antibody, A12, specific to IGF-IR, has shown potent antitumor effects in breast, colon, and pancreatic cancers in vitro and in vivo. In this study, we tested the in vivo effects of A12 on androgen-dependent and androgen-independent prostate tumor growth. EXPERIMENTAL DESIGN Androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate tumors were implanted s.c. into intact and castrated severe combined immunodeficient mice, respectively. When tumor volume reached about 150 to 200 mm(3), A12 was injected at 40 mg/kg body weight thrice a week for up to 5 weeks. RESULTS We find that A12 significantly inhibits growth of androgen-dependent LuCaP 35 and androgen-independent LuCaP 35V prostate xenografts, however, by different mechanisms. In LuCaP 35 xenografts, A12 treatment induces tumor cell apoptosis or G(1) cycle arrest. In LuCaP 35V xenografts, A12 treatment induces tumor cell G(2)-M cycle arrest. Moreover, we find that blocking the function of IGF-IR down-regulates androgen-regulated gene expression in androgen-independent LuCaP 35V tumor cells. CONCLUSIONS Our findings suggest that A12 is a therapeutic candidate for both androgen-dependent and androgen-independent prostate cancer. Our findings also suggest an IGF-IR-dependent activity of the androgen receptor in androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Jennifer D Wu
- Department of Medicine, University of Washington, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bindukumar B, Schwartz SA, Nair MPN, Aalinkeel R, Kawinski E, Chadha KC. Prostate-specific antigen modulates the expression of genes involved in prostate tumor growth. Neoplasia 2005; 7:241-52. [PMID: 15799824 PMCID: PMC1501136 DOI: 10.1593/neo.04529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prostate-specific antigen (PSA) is a serine protease that is widely used as a surrogate marker in the early diagnosis and management of prostate cancer. The physiological relevance of tissue PSA levels and their role in prostate tumor growth and metastasis are not known. Free-PSA (f-PSA) was purified to homogeneity from human seminal plasma by column chromatography, eliminating hk2 and all known PSA complexes and retaining its protease activity. Confluent monolayers of prostate cancer cell lines, PC-3M and LNCaP, were treated with f-PSA in a series of in vitro experiments to determine the changes in expression of various genes that are known to regulate tumor growth and metastasis. Gene array, quantitative polymerase chain reaction (QPCR), and enzyme-linked immunosorbent assay (ELISA) results show significant changes in the expression of various cancer-related genes in PC-3M and LNCaP cells treated with f-PSA. In a gene array analysis of PC-3M cells treated with 10 muM f-PSA, 136 genes were upregulated and 137 genes were downregulated. In LNCaP cells treated with an identical concentration of f-PSA, a total of 793 genes was regulated. QPCR analysis reveals that the genes for urokinase-type plasminogen activator (uPA), VEGF, and Pim-1 oncogene, known to promote tumor growth, were significantly downregulated, whereas IFN-gamma, known to be a tumor-suppressor gene, was significantly upregulated in f-PSA-treated PC-3M cells. The effect of f-PSA on VEGF and IFN-gamma gene expression and on protein release in PC-3M cells was distinctly dose-dependent. In vivo studies showed a significant reduction (P = .03) in tumor load when f-PSA was administered in the tumor vicinity of PC-3M tumor-bearing BALB/c nude mice. Our data support the hypothesis that f-PSA plays a significant role in prostate tumor growth by regulating various proangiogenic and antiangiogenic growth factors.
Collapse
Affiliation(s)
- B Bindukumar
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|