1
|
Alhudiri I, Nolan C, Ellis I, Elzagheid A, Green A, Chapman C. Expression of Cathepsin D in early-stage breast cancer and its prognostic and predictive value. Breast Cancer Res Treat 2024; 206:143-153. [PMID: 38578521 PMCID: PMC11182851 DOI: 10.1007/s10549-024-07293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Cathepsin D is a proteolytic enzyme that is normally localized in the lysosomes and is involved in the malignant progression of breast cancer. There are conflicting results regarding Cathepsin D significance as prognostic and predictor marker in breast cancer. This study aimed to evaluate the expression and prognostic significance of Cathepsin D in early-stage breast cancer. METHODS Expression of Cathepsin D was assessed by immunohistochemical staining of tissue microarrays, in a large well-characterized series of early-stage operable breast cancer (n = 954) from Nottingham Primary Breast Carcinoma Series between the period of 1988 and 1998 who underwent primary surgery. Correlation of Cathepsin D expression with clinicopathological parameters and prognosis was evaluated. RESULTS Cathepsin D expression was positive in 71.2% (679/954) of breast cancer tumours. Positive expression of Cathepsin D was significantly associated with high histological grade (p = 0.007), pleomorphism (p = 0.002), poor Nottingham Prognostic Index (NPI) score (p < 0.002), recurrence (p = 0.005) and distant metastasis (p < 0.0001). Kaplan-Meier analysis showed that Cathepsin D expression was significantly associated with shorter breast cancer-specific survival (p = 0.001), higher risk of recurrence (p = 0.001) and distant metastasis (p < 0.0001). ER-positive tumours expressing Cathepsin D and treated with tamoxifen demonstrated a significantly higher risk of distant metastasis. CONCLUSION Cathepsin D expression significantly predicts poor prognosis in breast cancer and is associated with variables of poor prognosis and shorter outcome. The strong association of Cathepsin D with aggressive tumour characteristics and poor outcomes warrants further research of its potential as a therapeutic target The results also suggest a possible interaction between Cathepsin D and tamoxifen therapy in ER-positive breast cancer which needs further investigation to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Inas Alhudiri
- Breast Pathology Research Group, Nottingham Breast Cancer Research Centre, Biodiscovery Institute, Faculty of Medicine, The University of Nottingham, Nottingham, UK
- Genetic Engineering Department, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Christopher Nolan
- Breast Pathology Research Group, Nottingham Breast Cancer Research Centre, Biodiscovery Institute, Faculty of Medicine, The University of Nottingham, Nottingham, UK
| | - Ian Ellis
- Breast Pathology Research Group, Nottingham Breast Cancer Research Centre, Biodiscovery Institute, Faculty of Medicine, The University of Nottingham, Nottingham, UK
| | - Adam Elzagheid
- Genetic Engineering Department, Libyan Biotechnology Research Centre, Tripoli, Libya
| | - Andrew Green
- Breast Pathology Research Group, Nottingham Breast Cancer Research Centre, Biodiscovery Institute, Faculty of Medicine, The University of Nottingham, Nottingham, UK.
| | - Caroline Chapman
- Eastern Bowel Cancer Screening Hub, Nottingham University Hospitals, NHS Trust, Nottingham, UK
| |
Collapse
|
2
|
Arana Echarri A, Beresford M, Campbell JP, Jones RH, Butler R, Gollob KJ, Brum PC, Thompson D, Turner JE. A Phenomic Perspective on Factors Influencing Breast Cancer Treatment: Integrating Aging and Lifestyle in Blood and Tissue Biomarker Profiling. Front Immunol 2021; 11:616188. [PMID: 33597950 PMCID: PMC7882710 DOI: 10.3389/fimmu.2020.616188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide. Over the last four decades, diagnostic and therapeutic procedures have improved substantially, giving patients with localized disease a better chance of cure, and those with more advanced cancer, longer periods of disease control and survival. However, understanding and managing heterogeneity in the clinical response exhibited by patients remains a challenge. For some treatments, biomarkers are available to inform therapeutic options, assess pathological response and predict clinical outcomes. Nevertheless, some measurements are not employed universally and lack sensitivity and specificity, which might be influenced by tissue-specific alterations associated with aging and lifestyle. The first part of this article summarizes available and emerging biomarkers for clinical use, such as measurements that can be made in tumor biopsies or blood samples, including so-called liquid biopsies. The second part of this article outlines underappreciated factors that could influence the interpretation of these clinical measurements and affect treatment outcomes. For example, it has been shown that both adiposity and physical activity can modify the characteristics of tumors and surrounding tissues. In addition, evidence shows that inflammaging and immunosenescence interact with treatment and clinical outcomes and could be considered prognostic and predictive factors independently. In summary, changes to blood and tissues that reflect aging and patient characteristics, including lifestyle, are not commonly considered clinically or in research, either for practical reasons or because the supporting evidence base is developing. Thus, an aim of this article is to encourage an integrative phenomic approach in oncology research and clinical management.
Collapse
Affiliation(s)
| | - Mark Beresford
- Department of Oncology and Haematology, Royal United Hospitals Bath NHS Trust, Bath, United Kingdom
| | | | - Robert H. Jones
- Department of Medical Oncology, Velindre Cancer Centre, Cardiff, United Kingdom
- Department of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Rachel Butler
- South West Genomics Laboratory Hub, North Bristol NHS Trust, Bristol, United Kingdom
| | - Kenneth J. Gollob
- International Center for Research, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
3
|
Kang J, Yu Y, Jeong S, Lee H, Heo HJ, Park JJ, Na HS, Ko DS, Kim YH. Prognostic role of high cathepsin D expression in breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920927838. [PMID: 32550865 PMCID: PMC7281710 DOI: 10.1177/1758835920927838] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background: High cathepsin D has been associated with poor prognosis in breast cancer;
however, the results of many studies are controversial. Here, we assessed
the association between high cathepsin D levels and worse breast cancer
prognosis by conducting a meta-analysis. Methods: A comprehensive search strategy was used to search relevant literature in
PUBMED and EMBASE by September 2018. The meta-analysis was performed in
Review Manager 5.3 using hazard ratios (HRs) with 95% confidence intervals
(CIs). Results: A total of 15,355 breast cancer patients from 26 eligible studies were
included in this meta-analysis. Significant associations between elevated
high cathepsin D and poor overall survival (OS) (HR = 1.61, 95% CI:
1.35–1.92, p < 0.0001) and disease-free survival (DFS)
(HR = 1.52, 95% CI: 1.31–2.18, p < 0.001) were observed.
In the subgroup analysis for DFS, high cathepsin D was significantly
associated with poor prognosis in node-positive patients (HR = 1.38, 95% CI:
1.25–1.71, p < 0.00001), node-negative patients
(HR = 1.78, 95% CI: 1.39–2.27, p < 0.0001), early stage
patients (HR = 1.73, 95% CI: 1.34–2.23, p < 0.0001), and
treated with chemotherapy patients (HR = 1.60, 95% CI: 1.21–2.12,
p < 0.001). Interestingly, patients treated with
tamoxifen had a low risk of relapse when their cathepsin D levels were high
(HR = 0.71, 95% CI: 0.52–0.98, p = 0.04) and a high risk of
relapse when their cathepsin D levels were low (HR = 1.50, 95% CI:
1.22–1.85, p = 0.0001). Conclusions: Our meta-analysis suggests that high expression levels of cathepsin D are
associated with a poor prognosis in breast cancer. Based on our subgroup
analysis, we believe that cathepsin D can act as a marker for poor breast
cancer prognosis and also as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Junho Kang
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Yeuni Yu
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Seongdo Jeong
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hansong Lee
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Departmment of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jeong Jun Park
- Departemt of Anesthesiology and Pain Medicine, Korea University College of Medicine, Anam Hospital, Seoul, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy and Department of Biomedical Informatics, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Kim S, Jin H, Seo HR, Lee HJ, Lee YS. Regulating BRCA1 protein stability by cathepsin S-mediated ubiquitin degradation. Cell Death Differ 2018; 26:812-825. [PMID: 30006610 PMCID: PMC6461859 DOI: 10.1038/s41418-018-0153-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 01/21/2023] Open
Abstract
Cathepsin S (CTSS) is a cysteine protease that is thought to play a role in many physiological and pathological processes including tumor growth, angiogenesis, and metastasis; it has been identified as a radiation response gene. Here, we examined the role of CTSS in regulating the DNA damage response in breast cancer cells. Activating CTSS (producing the cleavage form of the protein) by radiation induced proteolytic degradation of BRCA1, which ultimately suppressed DNA double-strand break repair activity. Depletion of CTSS by RNAi or expression of a mutant type of CTSS enhanced the protein stability of BRCA1 by inhibiting its ubiquitination. CTSS interacted with the BRCT domain of BRCA1 and facilitated ubiquitin-mediated proteolytic degradation of BRCA1, which was tightly associated with decreased BRCA1-mediated DNA repair activity. Treatment with a pharmacological CTSS inhibitor inhibited proteolytic degradation of BRCA1 and restored BRCA1 function. Depletion of CTSS by shRNA delayed tumor growth in a xenograft mouse model, only in the presence of functional BRCA1. Spontaneously uced rat mammary tumors and human breast cancer tissues with high levels of CTSS expression showed low BRCA1 expression. From these data, we suggest that CTSS inhibition is a good strategy for functional restoration of BRCA1 in breast cancers with reduced BRCA1 protein stability.
Collapse
Affiliation(s)
- SeoYoung Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, Korea
| | - Hang-Rhan Seo
- Functional Morphometry II, Institute Pasteur Korea, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Korea
| | - Hae June Lee
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
5
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Markićević M, Kanjer K, Mandušić V, Buta M, Nešković-Konstantinović Z, Nikolić-Vukosavljević D. Cathepsin D as an indicator of clinical outcome in early breast carcinoma during the first 3 years of follow-up. Biomark Med 2014; 7:747-58. [PMID: 24044567 DOI: 10.2217/bmm.13.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this study was to evaluate clinical usefulness of cathepsin D status in early breast cancer during the first 3 years of follow-up. PATIENTS & METHODS The study included 226 patients with histologically verified, primary operable invasive early breast carcinomas. Concentrations of estrogen receptor (ER) and progesterone receptor (PR) in breast tumor cytosols were measured by use of the classical biochemical method. The concentration of three cathepsin D forms (52-, 48- and 34-kDa proteins) was determined by a radioimmunoassay RESULTS On the basis of differences in cathepsin D levels either within an ER(-)/PR(-) phenotype or between this and either ER(+)/PR(+) or ER(+)/PR(-) phenotypes, a concentration of 39 pmol/mg was determined as the cutoff value for distinguishing estrogen-regulated cathepsin D expression. Estrogen-regulated cathepsin D expression was recognized as a high-risk biomarker for low-risk (histological grade I) breast cancer patients and as a low-risk biomarker for high-risk patients (pN(+) pT2,3). CONCLUSION Determination of cathepsin D status in breast cancer might identify patients at different risk for relapse and might facilitate the selection of more or less aggressive adjuvant therapy for early breast cancer patients during the first 3 years of follow-up.
Collapse
Affiliation(s)
- Milan Markićević
- Department of Experimental Oncology, Institute for Oncology & Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
7
|
Ruibal A, Herranz M, Arias JI. Clinical and Biological Significance of Cathepsin D Levels in Breast Cancer Cytosol in Women Over 70 years. BIOMARKERS IN CANCER 2012; 4:1-6. [PMID: 24179390 PMCID: PMC3791914 DOI: 10.4137/bic.s9096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective To study cytosolic cathepsin D behavior and possible relationship with other clinical and biological parameters in women affected by breast invasive ductal carcinomas and older than 70 years (range: 71–88). Material and methods cytosolic levels of cathepsin D were determined by an Immunoradiometric Assay (IRMA-CIS France). Clinical and biological factors analyzed were: size, axillary lymph node involvement, distant metastasis, histological grade, ploidy, S phase cell, cytosolic estrogen receptor, progesterone receptor and pS2, and concentrations of epidermal growth factor receptor (EGFR) in cell membranes. Results Cathepsin D concentrations ranged between 13 and 1228 pmol/mg prot.. Median value of 41 was considered as threshold of positivity. Cathepsin D positive tumors showed higher S-phase values (P = 0.046) and were most often histological grade III (P = 0.047). However, the most important finding was the existence of a positive correlation (r = 0.51786) and statistically significant (P < 0.05) between S-phase values and cathepsin D in the overall group of tumors, and those ER+, but not in ER−. We determined cathepsin D concentrations in 131 women with invasive ductal breast carcinomas, but aged between 50 and 70 years (median 61) and we did not find differences based on those values in women >70 years. In addition, we found no correlation between S-phase values and Cathepsin D, both overall and in relation with hormone dependence (ER). Conclusions Those results led us to the following conclusions: (1) cytosolic concentrations of cathepsin D in invasive infiltrating breast carcinomas in women over 70 are similar to those seen in women with the same type of tumor, but aged 50 to 70 years and are associated with increased cell proliferation measured by S phase, and histological grade III; (2) in women older than 70 years, cathepsin D concentrations are statistically significantly correlated with phase synthesis values in hormone-dependent tumors, but not in hormone-independent, fact not observed in infiltrating ductal breast carcinomas of women aged between 50 and 70. This could reflect a different mitogenic role of the aspartyl protease enzyme linked to hormone dependence as age function parameter.
Collapse
Affiliation(s)
- Alvaro Ruibal
- Nuclear Medicine Service, Medicine Faculty, Molecular Imaging Group, IDIS, University Hospital Complex, Travesía de Choupana s/n, 15706-Santiago de Compostela, Spain
| | | | | |
Collapse
|
8
|
Complex modulation of peptidolytic activity of cathepsin D by sphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1097-104. [DOI: 10.1016/j.bbalip.2011.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/22/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
|
9
|
Cathepsin D is partly endocytosed by the LRP1 receptor and inhibits LRP1-regulated intramembrane proteolysis. Oncogene 2011; 31:3202-12. [PMID: 22081071 DOI: 10.1038/onc.2011.501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aspartic protease cathepsin-D (cath-D) is a marker of poor prognosis in breast cancer that is overexpressed and hypersecreted by human breast cancer cells. Secreted pro-cath-D binds to the extracellular domain of the β-chain of the LDL receptor-related protein-1 (LRP1) in fibroblasts. The LRP1 receptor has an 85-kDa transmembrane β-chain and a noncovalently attached 515-kDa extracellular α-chain. LRP1 acts by (1) internalizing many ligands via its α-chain, (2) activating signaling pathways by phosphorylating the LRP1β-chain tyrosine and (3) modulating gene transcription by regulated intramembrane proteolysis (RIP) of its β-chain. LRP1 RIP involves two cleavages: the first liberates the LRP1 ectodomain to give a membrane-associated form, LRP1β-CTF, and the second generates the LRP1β-intracellular domain, LRP1β-ICD, that modulates gene transcription. Here, we investigated the endocytosis of pro-cath-D by LRP1 and the effect of pro-cath-D/LRP1β interaction on LRP1β tyrosine phosphorylation and/or LRP1β RIP. Our results indicate that pro-cath-D was partially endocytosed by LRP1 in fibroblasts. However, pro-cath-D and ectopic cath-D did not stimulate phosphorylation of the LRP1β-chain tyrosine. Interestingly, ectopic cath-D and its catalytically inactive (D231N)cath-D, and pro-(D231N)cath-D all significantly inhibited LRP1 RIP by preventing LRP1β-CTF production. Thus, cath-D inhibits LRP1 RIP independently of its catalytic activity by blocking the first cleavage. As cath-D triggers fibroblast outgrowth by LRP1, we propose that cath-D modulates the growth of fibroblasts by inhibiting LRP1 RIP in the breast tumor microenvironment.
Collapse
|
10
|
Masson O, Prébois C, Derocq D, Meulle A, Dray C, Daviaud D, Quilliot D, Valet P, Muller C, Liaudet-Coopman E. Cathepsin-D, a key protease in breast cancer, is up-regulated in obese mouse and human adipose tissue, and controls adipogenesis. PLoS One 2011; 6:e16452. [PMID: 21311773 PMCID: PMC3032791 DOI: 10.1371/journal.pone.0016452] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/16/2010] [Indexed: 01/24/2023] Open
Abstract
The aspartic protease cathepsin-D (cath-D) is overexpressed by human epithelial breast cancer cells and is closely correlated with poor prognosis in breast cancer. The adipocyte is one of the most prominent cell types in the tumor-microenvironment of breast cancer, and clinical studies have shown that obesity increases the incidence of breast cancer. Here, we provide the first evidence that cath-D expression is up-regulated in adipose tissue from obese human beings, as well as in adipocytes from the obese C57BI6/J mouse. Cath-D expression is also increased during human and mouse adipocyte differentiation. We show that cath-D silencing in 3T3-F442A murine preadipocytes leads to lipid-depleted cells after adipogenesis induction, and inhibits of the expression of PPARγ, HSL and aP2 adipocyte differentiation markers. Altogether, our findings demonstrate the key role of cath-D in the control of adipogenesis, and suggest that cath-D may be a novel target in obesity.
Collapse
Affiliation(s)
- Olivier Masson
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier 1, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Christine Prébois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier 1, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Danielle Derocq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier 1, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | - Aline Meulle
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
- Institute of Pharmacology and Structural Biology CNRS UMR 5089, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Cédric Dray
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
- INSERM, U858, Toulouse, France
| | - Danielle Daviaud
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
- INSERM, U858, Toulouse, France
| | - Didier Quilliot
- Service de diabétologie, Maladies métaboliques et nutrition, CHU de Nancy, Nancy, France
| | - Philippe Valet
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
- INSERM, U858, Toulouse, France
| | - Catherine Muller
- Institute of Pharmacology and Structural Biology CNRS UMR 5089, Toulouse, France
- Université de Toulouse, Toulouse, France
| | - Emmanuelle Liaudet-Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U896, Montpellier, France
- Université Montpellier 1, Montpellier, France
- CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
- * E-mail:
| |
Collapse
|
11
|
Masson O, Bach AS, Derocq D, Prébois C, Laurent-Matha V, Pattingre S, Liaudet-Coopman E. Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity? Biochimie 2010; 92:1635-43. [DOI: 10.1016/j.biochi.2010.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/14/2010] [Indexed: 11/27/2022]
|
12
|
Beaujouin M, Prébois C, Derocq D, Laurent-Matha V, Masson O, Pattingre S, Coopman P, Bettache N, Grossfield J, Hollingsworth RE, Zhang H, Yao Z, Hyman BT, van der Geer P, Smith GK, Liaudet-Coopman E. Pro-cathepsin D interacts with the extracellular domain of the beta chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth. J Cell Sci 2010; 123:3336-46. [PMID: 20826454 DOI: 10.1242/jcs.070938] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between cancer cells and fibroblasts are crucial in cancer progression. We have previously shown that the aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer that is overexpressed and highly secreted by breast cancer cells, triggers mouse embryonic fibroblast outgrowth via a paracrine loop. Here, we show the requirement of secreted cath-D for human mammary fibroblast outgrowth using a three-dimensional co-culture assay with breast cancer cells that do or do not secrete pro-cath-D. Interestingly, proteolytically-inactive pro-cath-D remains mitogenic, indicating a mechanism involving protein-protein interaction. We identify the low-density lipoprotein (LDL) receptor-related protein-1, LRP1, as a novel binding partner for pro-cath-D in fibroblasts. Pro-cath-D binds to residues 349-394 of the β chain of LRP1, and is the first ligand of the extracellular domain of LRP1β to be identified. We show that pro-cath-D interacts with LRP1β in cellulo. Interaction occurs at the cell surface, and overexpressed LRP1β directs pro-cath-D to the lipid rafts. Our results reveal that the ability of secreted pro-cath-D to promote human mammary fibroblast outgrowth depends on LRP1 expression, suggesting that pro-cath-D-LRP1β interaction plays a functional role in the outgrowth of fibroblasts. Overall, our findings strongly suggest that pro-cath-D secreted by epithelial cancer cells promotes fibroblast outgrowth in a paracrine LRP1-dependent manner in the breast tumor microenvironment.
Collapse
Affiliation(s)
- Mélanie Beaujouin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McKeen HD, Byrne C, Jithesh PV, Donley C, Valentine A, Yakkundi A, O'Rourke M, Swanton C, McCarthy HO, Hirst DG, Robson T. FKBPL regulates estrogen receptor signaling and determines response to endocrine therapy. Cancer Res 2010; 70:1090-100. [PMID: 20103631 DOI: 10.1158/0008-5472.can-09-2515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HSP90 chaperone and immunophilin FKBPL is an estrogen-responsive gene that interacts with estogen receptor alpha (ERalpha) and regulates its levels. In this study, we explored the effects of FKBPL on breast cancer proliferation. Breast cancer cells stably overexpressing FKBPL became dependent on estrogen for their growth and were dramatically more sensitive to the antiestrogens tamoxifen and fulvestrant, whereas FKBPL knockdown reverses this phenotype. FKBPL knockdown also decreased the levels of the cell cycle inhibitor p21WAF1 and increased ERalpha phosphorylation on Ser(118) in response to 17beta-estradiol and tamoxifen. In support of the likelihood that these effects explained FKBPL-mediated cell growth inhibition and sensitivity to endocrine therapies, FKBPL expression was correlated with increased overall survival and distant metastasis-free survival in breast cancer patients. Our findings suggest that FKBPL may have prognostic value based on its impact on tumor proliferative capacity and sensitivity to endocrine therapies, which improve outcome.
Collapse
Affiliation(s)
- Hayley D McKeen
- School of Pharmacy, McClay Research Centre and Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|
15
|
Benes P, Vetvicka V, Fusek M. Cathepsin D--many functions of one aspartic protease. Crit Rev Oncol Hematol 2008; 68:12-28. [PMID: 18396408 PMCID: PMC2635020 DOI: 10.1016/j.critrevonc.2008.02.008] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 12/11/2022] Open
Abstract
For years, it has been held that cathepsin D (CD) is involved in rather non-specific protein degradation in a strongly acidic milieu of lysosomes. Studies with CD knock-out mice revealed that CD is not necessary for embryonal development, but it is indispensable for postnatal tissue homeostasis. Mutation that abolishes CD enzymatic activity causes neuronal ceroid lipofuscinosis (NCL) characterized by severe neurodegeneration, developmental regression, visual loss and epilepsy in both animals and humans. In the last decade, however, an increasing number of studies demonstrated that enzymatic function of CD is not restricted solely to acidic milieu of lysosomes with important consequences in regulation of apoptosis. In addition to CD enzymatic activity, it has been shown that apoptosis is also regulated by catalytically inactive mutants of CD which suggests that CD interacts with other important molecules and influences cell signaling. Moreover, procathepsin D (pCD), secreted from cancer cells, acts as a mitogen on both cancer and stromal cells and stimulates their pro-invasive and pro-metastatic properties. Numerous studies found that pCD/CD level represents an independent prognostic factor in a variety of cancers and is therefore considered to be a potential target of anti-cancer therapy. Studies dealing with functions of cathepsin D are complicated by the fact that there are several simultaneous forms of CD in a cell-pCD, intermediate enzymatically active CD and mature heavy and light chain CD. It became evident that these forms may differently regulate the above-mentioned processes. In this article, we review the possible functions of CD and its various forms in cells and organisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Petr Benes
- Laboratory of Cell Differentiation, Department of Experimental Biology, Faculty of Science, Masaryk University, ILBIT A3, Kamenice 3, Brno 625 00, Czech Republic.
| | | | | |
Collapse
|
16
|
Ildefonso C, Vazquez J, Guinea O, Perez A, Fernandez A, Corte MD, Junquera S, Gonzalez LO, Pravia P, Garcia-Moran M, Vizoso FJ. The mammographic appearance of breast carcinomas of invasive ductal type: Relationship with clinicopathological parameters, biological features and prognosis. Eur J Obstet Gynecol Reprod Biol 2008; 136:224-31. [PMID: 17118521 DOI: 10.1016/j.ejogrb.2006.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/01/2006] [Accepted: 10/20/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the clinical significance of the mammographic appearance of tumors in 411 patients with infiltrating ductal carcinoma of the breast. STUDY DESIGN Tumors were classified into five radiographic subgroups: spiculated mass (A-type), diffuse changes with or without suspicious microcalcifications (B-type), microcalcifications with a mass (C-type), circumscribed (D-type), and not visible (E-type). Intratumoral levels of estrogen (ER) and progesterone (PR) receptors, c-erbB-2, EGFR, pS2, cathepsin D and tPA, ploidy and S-phase fraction, were analysed in a significant number of cases. RESULTS A-type A radiographic pattern was detected in 234 patients (57%), B-type in 46 (11%), C-type in 46 (11%), D-type in 68 (17%), and E-type in 17 patients (4%). On the other hand, a total of 155 tumors (37.8%) showed microcalcifications. The percentage of tumors showing A-type pattern was more frequent in postmenopausal women, in well-differentiated tumors, and in those showing higher levels of ER, pS2 of tPA. However, B-type pattern was detected in a high percentage of premenopausal women and in those showing larger tumors, positive nodes, poor differentiation or high S-phase fraction. Cox multivariate analysis showed that B-type pattern and the absence of microcalcifications were factors significantly associated to high risk for relapse. CONCLUSIONS Our results suggest that the mammographic appearance of tumor may to provide useful clinical information in addition to classical prognostic factor in infiltrating ductal carcinoma of the breast.
Collapse
|
17
|
Long-term pattern of disease recurrence among patients with early-stage breast cancer according to estrogen receptor status and use of adjuvant tamoxifen. Breast Cancer Res Treat 2007; 107:71-8. [DOI: 10.1007/s10549-007-9520-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
|