1
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
2
|
Jiang Z, Bahr T, Zhou C, Jin T, Chen H, Song S, Ikeno Y, Tian H, Bai Y. Diagnostic value of circulating cell-free mtDNA in patients with suspected thyroid cancer: ND4/ND1 ratio as a new potential plasma marker. Mitochondrion 2020; 55:145-153. [PMID: 33035689 PMCID: PMC9680688 DOI: 10.1016/j.mito.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy, and its incidence continues to rise. For clinicians with cancer patients, choosing and interpreting diagnostic laboratory studies has become increasingly important. Previously, changes in plasma free mitochondrial DNA levels have been found in colorectal, breast, lung, and urinary cancers, and have demonstrated diagnostic value. In this study, we investigated whether the occurrence and development of thyroid cancer might be predicted using mtDNA copy number (ND1), mtDNA integrity (ND4/ND1) and levels of cell-free nDNA (GAPDH). We analyzed ND1, ND4, and GAPDH levels in plasma and blood cells from 75 patients with thyroid cancer, 40 patients with nodular goiter, and 107 normal controls using real-time PCR. Although both the thyroid nodule and thyroid cancer patients had significantly increased ND1 levels, the ND4/ND1 ratio in the thyroid cancer group was higher than the thyroid nodule group (P < 0.05), and significantly higher than the normal control group (P < 0.01). Plasma levels of nuclear DNA (GAPDH) in the thyroid cancer group were also higher compared to normal (P < 0.05). These results indicate that increased intactness of plasma free mtDNA is associated with increased levels of plasma cell-free nDNA, and that the ND4/ND1 ratio has the potential to be a new detection indicator in thyroid cancer. Furthermore, we classified thyroid cancer patients according to clinical data including age, tumor size, and metastasis. We found significantly higher levels of GAPDH in malignant tissues. Because ND4/ND1 correlated with plasma GAPDH in the plasma studies, this also suggests a potential relationship between ND4 intactness and thyroid tumor tissue size. Taken together, our findings suggest a tumor-specific process involving increased release of intact mtDNA, detectable in the plasma, which differentiates normal patients from patients with thyroid cancer.
Collapse
Affiliation(s)
- Zhiying Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China; Department of Clinical Laboratory, Nanjing Jiangbei People's Hospital Affiliated of Nantong University, China
| | - Tyler Bahr
- University of Texas Health San Antonio, United States
| | - Chen Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Tao Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Hao Chen
- The Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Yuji Ikeno
- University of Texas Health San Antonio, United States
| | - Hengli Tian
- The Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Yidong Bai
- University of Texas Health San Antonio, United States.
| |
Collapse
|
3
|
Afrifa J, Zhao T, Yu J. Circulating mitochondria DNA, a non-invasive cancer diagnostic biomarker candidate. Mitochondrion 2018; 47:238-243. [PMID: 30562607 DOI: 10.1016/j.mito.2018.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The mitochondria are defined by their unique structure and cellular functions which includes energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, cell motility and transport as well as free radical generation. Recent advances geared towards enhancing the diagnostic and prognostic value of cancer patients have targeted the circulating mitochondria genome due to its specific and unique characteristics. Circulating mitochondria DNA is known to possess short length, relatively simple molecular structure and a high copy number. These coupled with its ability to serve as a liquid biopsy makes it an easily accessible non-invasive biomarker for diagnostics and prognostics of various forms of solid tumors. In this article, we review recent findings on circulating mitochondria DNA content in cancer. In addition, we provide an insight into the potential of circulating mitochondria DNA to act as a non-invasive diagnostic biomarker and its linearity with clinical and sociodemographic characteristics.
Collapse
Affiliation(s)
- Justice Afrifa
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
Value of circulating cell-free DNA analysis as a diagnostic tool for breast cancer: a meta-analysis. Oncotarget 2018; 8:26625-26636. [PMID: 28460452 PMCID: PMC5432284 DOI: 10.18632/oncotarget.15775] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to systematically evaluate the diagnostic value of cell free DNA (cfDNA) for breast cancer. RESULTS Among 308 candidate articles, 25 with relevant diagnostic screening qualified for final analysis. The mean sensitivity, specificity and area under the curve (AUC) of SROC plots for 24 studies that distinguished breast cancer patients from healthy controls were 0.70, 0.87, and 0.9314, yielding a DOR of 32.31. When analyzed in subgroups, the 14 quantitative studies produced sensitivity, specificity, AUC, and a DOR of 0.78, 0.83, 0.9116, and 24.40. The 10 qualitative studies produced 0.50, 0.98, 0.9919, and 68.45. For 8 studies that distinguished malignant breast cancer from benign diseases, the specificity, sensitivity, AUC and DOR were 0.75, 0.79, 0.8213, and 9.49. No covariate factors had a significant correlation with relative DOR. Deek's funnel plots indicated an absence of publication bias. MATERIALS AND METHODS Databases were searched for studies involving the use of cfDNA to diagnose breast cancer. The studies were analyzed to determine sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and the summary receiver operating characteristic (SROC). Covariates were evaluated for effect on relative DOR. Deek's Funnel plots were generated to measure publication bias. CONCLUSIONS Our analysis suggests a promising diagnostic potential of using cfDNA for breast cancer screening, but this diagnostic method is not yet independently sufficient. Further work refining qualitative cfDNA assays will improve the correct diagnosis of breast cancers.
Collapse
|
5
|
Wielscher M, Pulverer W, Peham J, Hofner M, Rappaport CF, Singer C, Jungbauer C, Nöhammer C, Weinhäusel A. Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing. BMC Clin Pathol 2011; 11:11. [PMID: 21896199 PMCID: PMC3180258 DOI: 10.1186/1472-6890-11-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/06/2011] [Indexed: 01/12/2023] Open
Abstract
Background Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample. Methods Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing. Results In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples. Conclusion MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.
Collapse
Affiliation(s)
- Matthias Wielscher
- Molecular Medicine, Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
El Tarhouny SA, Hadhoud KM, Ebrahem MM, Al Azizi NM. Assessment of cell-free DNA with microvascular complication of type II diabetes mellitus, using PCR and ELISA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:228-36. [PMID: 20408053 DOI: 10.1080/15257771003708298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In order to assess the potential biochemical markers in the development, diagnosis, and prognosis of diabetic patient with microvascular complication represented with retinopathy, we analyzed the levels of cell-free DNA by two different techniques. The levels of cell-free GAPDH assayed by quantitative PCR were significantly higher in the plasma samples of diabetic patients with and without diabetic retinopathy than in those of the control group; thus, it is a better biomarker than nucleosomes assayed by ELISA in patients with type 2 diabetes for the early detection of development of microvascular complications as retinopathy.
Collapse
Affiliation(s)
- Shereen A El Tarhouny
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
7
|
Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, Bürki N, Diesch C, Holzgreve W, Zhong XY. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 2009; 8:105. [PMID: 19922604 PMCID: PMC2780981 DOI: 10.1186/1476-4598-8-105] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/17/2009] [Indexed: 12/14/2022] Open
Abstract
Background With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA) seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have been found in several cancer types and might have a diagnostic value. Methods Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic) curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. Results While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P < 0.001) and the healthy control group (P < 0.001), the level of ccf mtDNA was found to be significantly lower in the two tumor-groups (benign: P < 0.001; malignant: P = 0.022). The level of ccf nDNA was also associated with tumor-size (<2 cm vs. >2 cm<5 cm; 2250 vs. 6658; Mann-Whitney-U-Test: P = 0.034). Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P < 0.001) and between the tumor group and the healthy controls using ccf mtDNA as marker (cut-off: 463282 GE/ml; sensitivity: 53%; specificity: 87%; P < 0.001). Conclusion Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.
Collapse
Affiliation(s)
- Corina Kohler
- Laboratory for Prenatal Medicine and Gynecologic Oncology, Women's Hospital/Department of Biomedicine, University of Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Circulating cell-free DNA as a potential biomarker for minimal and mild endometriosis. Reprod Biomed Online 2009; 18:407-11. [PMID: 19298741 DOI: 10.1016/s1472-6483(10)60100-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It has recently been reported that high concentrations of circulating cell-free (ccf) nucleic acids in plasma and serum could be used as biomarkers for non-invasive monitoring a wide variety of malignant and benign proliferations and inflammatory conditions. Endometriosis is one of the most common benign gynaecological proliferations with inflammatory activation in premenopausal women. Real-time multiplex polymerase chain reaction was used for synchronized quantification of the glyceraldehyde-3-phosphate dehydrogenase gene sequence in nuclear DNA (nDNA) and the ATP synthase-8 gene sequence in mitochondrial DNA (mtDNA). DNA was extracted from 500 microl serum and plasma of 19 cases with endometriosis to measure the total amount of ccf nDNA and ccf mtDNA. The concentration of ccf nDNA in plasma was significantly higher in the endometriosis group than in the control group (P = 0.046). The cut-off value selected by a receiver operating characteristic curve could provide a sensitivity of 70% and a specificity of 87% to discriminate between the minimal or mild cases and normal controls. The finding of significantly increased concentrations of ccf nDNA in plasma of patients with endometriosis suggests that ccf nDNA might be a potential biomarker for developing non-invasive diagnostic test in endometriosis.
Collapse
|