1
|
Lu J, Liu Y, Li H. Identification of key lncRNAs and mRNAs in muscle development pathways of Tan sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101336. [PMID: 39378789 DOI: 10.1016/j.cbd.2024.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The study aimed to identify the long noncoding RNA (lncRNA) responsible for regulating muscle development in Tan sheep. RNA-seq analysis was conducted on longissimus dorsi samples from 1-day-old and 60-day-old Tan sheep to investigate the molecular processes involved in muscle development. A total of 5517 lncRNAs and 2885 mRNAs were found to be differentially expressed in the 60-day-old Tan sheep. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these differentially expressed lncRNAs and mRNAs were linked to pathways crucial for muscle development, such as MAPK, cAMP, and calcium-mediated signaling pathways. Key genes like CDKN1A, MAPK14, TGFB1, MEF2C, MYOD1, and CD53 were identified as significant players in muscle development. The study validated the RNA-seq results through RT-qPCR, confirming the consistency of expression levels of differentially expressed lncRNAs and mRNAs. These findings indicate that lncRNA-mRNA networks produce a remarked effect on modulating muscle development in Tan sheep, such as lncRNAs (MSTRG.12808.1/MSTRG.22662.3/MSTRG.18310.1) and mRNAs (MSTRG.10027/MSTRG.10029/MSTRG.10258/MSTRG.11011/MSTRG.10354), laying the groundwork for future research in this area.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
3
|
Hjazi A, Ghaffar E, Asghar W, Alauldeen Khalaf H, Ikram Ullah M, Mireya Romero-Parra R, Hussien BM, Abdulally Abdulhussien Alazbjee A, Singh Bisht Y, Fakri Mustafa Y, Reza Hosseini-Fard S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem Pharmacol 2023; 213:115627. [PMID: 37257723 DOI: 10.1016/j.bcp.2023.115627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Long non-coding RNAs (lncRNA) have been identified as essential components having considerable modulatory impactson biological activities through altering gene transcription, epigenetic changes, and protein translation. Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), a recently discovered lncRNA, was shown to be substantially elevated in various cancers.Furthermore, via modulation ofvarious signalingaxes, it is effectively connected to the control of critical cancer-associatedbiological pathways likecell proliferation, apoptosis, cell cycle, epithelial-mesenchymal transition(EMT), invasion, and migration. Considering the crucial functions ofCDKN2B-AS1in cancer onset and development, this lncRNA offers immense therapeutic implications for usage as a new diagnostic or treatment approach. In this article, we evaluate the most recent discoveries made into the functions of the lncRNA CDKN2B-AS1 in cancer, in addition to its prospect asbeneficial properties,prognostic anddiagnostic biomarkersin the cancer-related treatment, emphasizingits participation in a broad network of signalingaxes whichcould affectvariouscancers and investigating its promising therapeutic possibility.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | | | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Biochemistry Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Lv Y, Wang Y, Zhang Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum Cell 2023; 36:76-97. [PMID: 36181662 DOI: 10.1007/s13577-022-00799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA-miRNA-mRNA regulatory networks as biomarkers for the early diagnosis, epithelial-mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China. .,Department of Morphology, Medical College of China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
5
|
Ghafouri-Fard S, Poornajaf Y, Hussen BM, Abak A, Shoorei H, Taheri M, Sharifi G. Implication of non-coding RNA-mediated ROCK1 regulation in various diseases. Front Mol Biosci 2022; 9:986722. [PMID: 36177350 PMCID: PMC9513225 DOI: 10.3389/fmolb.2022.986722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Rho Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1) is a protein serine/threonine kinase which is activated upon binding with the GTP-bound form of Rho. This protein can modulate actin-myosin contraction and stability. Moreover, it has a crucial role in the regulation of cell polarity. Therefore, it participates in modulation of cell morphology, regulation of expression of genes, cell proliferation and differentiation, apoptotic processes as well as oncogenic processes. Recent studies have highlighted interactions between ROCK1 and several non-coding RNAs, namely microRNAs, circular RNAs and long non-coding RNAs. Such interactions can be a target of medications. In fact, it seems that the interactions are implicated in therapeutic response to several medications. In the current review, we aimed to explain the impact of these interactions in the pathoetiology of cancers as well as non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Guive Sharifi,
| |
Collapse
|
6
|
Farooqi AA, Zahid R, Naureen H, Attar R, Gazouli M, Berardi R, Szelachowska J, Matkowski R, Pawlak E. Regulation of ROCK1/2 by long non-coding RNAs and circular RNAs in different cancer types. Oncol Lett 2022; 23:159. [PMID: 35399329 PMCID: PMC8987920 DOI: 10.3892/ol.2022.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Recent breakthroughs in high-throughput technologies have enabled the development of a better understanding of the functionalities of rho-associated protein kinases (ROCKs) under various physiological and pathological conditions. Since their discovery in the late 1990s, ROCKs have attracted the attention of interdisciplinary researchers due to their ability to pleiotropically modulate a myriad of cellular mechanisms. A rapidly growing number of published studies have started to shed light on the mechanisms underlying the regulation of ROCK1 and ROCK2 via long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in different types of cancer. Detailed analyses have suggested that lncRNAs may be characteristically divided into oncogenic and tumor suppressor lncRNAs. Several exciting recent discoveries have also indicated how different lncRNAs and circRNAs modulate ROCK1/2 and mediate multistep cancer onset and progression. The present review chronicles the major advances that have been made in our understanding of the regulatory role of ROCK1/2 in different types of cancer, and how wide-ranging lncRNAs and circRNAs potentiate ROCK-driven signaling by blocking the targeting activities of tumor suppressor microRNAs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering, Islamabad 54000, Pakistan
| | - Rabbia Zahid
- Institute of Chemistry, University of Punjab, Lahore 43000, Pakistan
| | - Humaira Naureen
- Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 54000, Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University 34280, Turkey
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 54634, Greece
| | - Rossana Berardi
- Oncology Clinic-Marche Polytechnic University, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I-GM Lancisi-G Salesi di Ancona, I-60126 Ancona, Italy
| | - Jolanta Szelachowska
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Wroclaw Comprehensive Cancer Centre, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
- Wroclaw Comprehensive Cancer Centre, 53-413 Wroclaw, Poland
| | - Edyta Pawlak
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-013 Wroclaw, Poland
| |
Collapse
|
7
|
Li J, Kong M, Wang D, Yang Z, Hao X. Prediction of lncRNA-Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network. Front Genet 2022; 12:808962. [PMID: 35058974 PMCID: PMC8763691 DOI: 10.3389/fgene.2021.808962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulated evidence of biological clinical trials has shown that long non-coding RNAs (lncRNAs) are closely related to the occurrence and development of various complex human diseases. Research works on lncRNA–disease relations will benefit to further understand the pathogenesis of human complex diseases at the molecular level, but only a small proportion of lncRNA–disease associations has been confirmed. Considering the high cost of biological experiments, exploring potential lncRNA–disease associations with computational approaches has become very urgent. In this study, a model based on closest node weight graph of the spatial neighborhood (CNWGSN) and edge attention graph convolutional network (EAGCN), LDA-EAGCN, was developed to uncover potential lncRNA–disease associations by integrating disease semantic similarity, lncRNA functional similarity, and known lncRNA–disease associations. Inspired by the great success of the EAGCN method on the chemical molecule property recognition problem, the prediction of lncRNA–disease associations could be regarded as a component recognition problem of lncRNA–disease characteristic graphs. The CNWGSN features of lncRNA–disease associations combined with known lncRNA–disease associations were introduced to train EAGCN, and correlation scores of input data were predicted with EAGCN for judging whether the input lncRNAs would be associated with the input diseases. LDA-EAGCN achieved a reliable AUC value of 0.9853 in the ten-fold cross-over experiments, which was the highest among five state-of-the-art models. Furthermore, case studies of renal cancer, laryngeal carcinoma, and liver cancer were implemented, and most of the top-ranking lncRNA–disease associations have been proven by recently published experimental literature works. It can be seen that LDA-EAGCN is an effective model for predicting potential lncRNA–disease associations. Its source code and experimental data are available at https://github.com/HGDKMF/LDA-EAGCN.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.,Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin, China
| | - Mengfan Kong
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Duanyang Wang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Zhenwu Yang
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Xiaoke Hao
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
8
|
Neutrophils Promote Larynx Squamous Cell Carcinoma Progression via Activating the IL-17/JAK/STAT3 Pathway. J Immunol Res 2021; 2021:8078646. [PMID: 34938816 PMCID: PMC8687822 DOI: 10.1155/2021/8078646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the main type of laryngeal cancer with poor prognosis. Incidence of LSCC increases every year, posing a great threat to human health. The underlying mechanism needs further study. Neutrophils are the most prevalent type of immune cells, which play vital roles in crosstalk between the microenvironment and cancer cells. In our study, we aim to figure out the complex regulation between neutrophils and LSCC. Our experiments showed that LSCC cells could promote the activation and mobility of neutrophils. And, in return, neutrophils enhanced the proliferation, migration, and invasion of LSCC. The subsequent results showed that IL-17 was highly expressed in neutrophil conditioned medium. Block of IL-17 could effectively inhibit the progression of LSCC induced by neutrophils. What is more, the results showed that IL-17 activated the JAK/STAT3 pathway in LSCC. Inhibition of the JAK/STAT3 pathway could significantly block neutrophil-induced LSCC progression. Our research reveals the complex interaction between neutrophils and LSCC cells, providing new ideas for the treatment of LSCC.
Collapse
|
9
|
Wan L, Gu D, Li P. LncRNA SNHG16 promotes proliferation and migration in laryngeal squamous cell carcinoma via the miR-140-5p/NFAT5/Wnt/β-catenin pathway axis. Pathol Res Pract 2021; 229:153727. [PMID: 34911016 DOI: 10.1016/j.prp.2021.153727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies demonstrate that long noncoding RNAs (lncRNAs) are involved in the development of various cancers. Many lncRNAs were reported to abnormally express in laryngeal squamous cell carcinoma (LSCC) and play pivotal roles in its development. LncRNA small nucleolar RNA host gene 16 (SNHG16) was previously validated as an oncogene in hepatocellular carcinoma. Nevertheless, the biological role of SNHG16 in LSCC still needs more explorations. The goal of this assay is to explore the function and molecular mechanism of lncRNA SNHG16 in the development of LSCC. METHODS AND RESULTS First, RT-qPCR demonstrated the upregulation of SNHG16 in LSCC cells and tissues. Loss-of-function assays determined the inhibitive influence of SNHG16 downregulation on cell viability, growth, and migration in LSCC. Furthermore, SNHG16 bound with miR-140-5p in LSCC. MiR-140-5p overexpression suppressed LSCC cell proliferation and migration. NFAT5 was identified as a direct target of miR-140-5p. Through rescue experiments, overexpression of NFAT5 reversed SNHG16 knockdown-mediated suppression on cell viability, growth, and migration in LSCC. Additionally, NFAT5 overexpression activated while NFAT5 downregulation inhibited the Wnt/β-catenin signaling pathway. CONCLUSION LncRNA SNHG16 is upregulated in LSCC and contributes to the development of LSCC via regulating the miR-140-5p/NFAT5/Wnt/β-catenin pathway axis. The SNHG16/miR-140-5p/NFAT5/Wnt/β-catenin pathway axis might provide a novel strategy for LSCC treatment.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Dongsheng Gu
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Peizhong Li
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China.
| |
Collapse
|
10
|
Ma ML, Zhang HY, Zhang SY, Yi XL. LncRNA CDKN2B‑AS1 sponges miR‑28‑5p to regulate proliferation and inhibit apoptosis in colorectal cancer. Oncol Rep 2021; 46:213. [PMID: 34368874 DOI: 10.3892/or.2021.8164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 11/06/2022] Open
Abstract
Long noncoding RNA (lncRNA) CDKN2B‑antisense RNA 1 (AS1) functions as a tumor oncogene in numerous cancers. However, the roles and mechanism of CDKN2B‑AS1 in colorectal cancer (CRC) have not been explored. The present study aimed to investigate whether and how CDKN2B‑AS1 contributes to CRC progression. The data revealed that CDKN2B‑AS1 expression was upregulated in CRC tissues. Loss‑of‑function assays demonstrated that CDKN2B‑AS1 in CRC modulated cell proliferation and apoptosis, which was mediated by cyclin D1, cyclin‑dependent kinase (CDK) 4, p‑Rb, caspase‑9 and caspase‑3. Bioinformatics analysis and luciferase reporter assays indicated direct binding of microRNA (miR)‑28‑5p to CDKN2B‑AS1. Moreover, the results herein revealed that the expression of miR‑28‑5p was negatively correlated with that of CDKN2B‑AS1 in CRC tissue. Moreover, CDKN2B‑AS1 acted as a miR‑28‑5p competing endogenous RNA (ceRNA) to target and regulate the expression of URGCP. These findings indicated that CDKN2B‑AS1 plays roles in CRC progression, providing a potential therapeutic target or novel diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Mei-Li Ma
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| | - Hong-Yan Zhang
- Department of Oncology, Qingdao ChengYang People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Shu-Yi Zhang
- Department of Radiology, Qingdao Haici Medical Group, Qingdao, Shandong 266034, P.R. China
| | - Xiao-Li Yi
- Department of Oncology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
11
|
Sun Y, Liu L, Xing W, Sun H. microRNA-148a-3p enhances the effects of sevoflurane on hepatocellular carcinoma cell progression via ROCK1 repression. Cell Signal 2021; 83:109982. [PMID: 33741494 DOI: 10.1016/j.cellsig.2021.109982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC. METHODS Liver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified. RESULTS SEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO. CONCLUSION Our study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Wanying Xing
- Department of breast surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Hai Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
12
|
Wang K, Hu YB, Zhao Y, Ye C. LncRNA ANRIL Regulates Ovarian Cancer Progression and Tumor Stem Cell-Like Characteristics via miR-324-5p/Ran Axis. Onco Targets Ther 2021; 14:565-576. [PMID: 33500630 PMCID: PMC7826075 DOI: 10.2147/ott.s273614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Long non-coding RNA (lncRNA) ANRIL is emerging as a crucial role in ovarian cancer progression and prognosis. However, the precise molecular mechanism of ANRIL on ovarian cancer is not known. Thus, we aim to study the underlying mechanism of ANRIL on the action. Methods The MTT assay assessed cell viability. Cell migration and invasion were determined using the wound healing assay, Transwell migration, and invasion assay. The relationships of ANRIL, miR-324-5p, and RAN were evaluated using luciferase activity assay and RNA pull-down assay. Cancer stem cell was identified by flow cytometry. Sphere formation assay was conducted to determine the stem-like properties. Xenograft tumor was established to assess tumor growth in vivo. qRT-PCR and Western blot were used to detect gene expression. Results ANRIL was elevated while miR-324-5p was decreased in ovarian cancer tissues and cells. Besides, downregulated ANRIL enhanced miR-324-5p expression, and the luciferase reporting experiment and RNA pull-down assay showed the binding interaction between ANRIL and miR-324-5p. miR-324-5p directly targeted Ran and negatively modulated the expression of Ran. Besides, Ran was promoted by overexpressed ANRIL, which was reversed by overexpression of miR-324-5p. Furthermore, decreased ANRIL and increased miR-324-5p suppressed tumor growth, migration capacity, drug resistance, and alleviated stem-like characteristics in vitro and in vivo. Ran mediated the regulation of ANRIL on cell viability, stem-like properties, and drug resistance of ovarian cancer cells. Conclusion The ANRIL/miR-324-5p/Ran axis regulated ovarian cancer development, making the axis meaningful targets for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Gynaecology and Obstetrics, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Yu-Bo Hu
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Ye Zhao
- Department of Dermatology, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Cong Ye
- Department of Gynaecology and Obstetrics, The Third Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| |
Collapse
|
13
|
Chang J, Yu Y, Fang Z, He H, Wang D, Teng J, Yang L. Long non-coding RNA CDKN2B-AS1 regulates high glucose-induced human mesangial cell injury via regulating the miR-15b-5p/WNT2B axis. Diabetol Metab Syndr 2020; 12:109. [PMID: 33298110 PMCID: PMC7724838 DOI: 10.1186/s13098-020-00618-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) has been reported to be related to diabetic nephropathy (DN) progression. However, the regulatory mechanisms of CDKN2B-AS1 in DN are unclear. METHODS High glucose (HG) was used to induce human mesangial cells (HMCs) for establishing the DN model. Expression levels of CDKN2B-AS1, microRNA (miR)-15b-5p, wingless-Type family member 2B (WNT2B) mRNA in serum and HMCs were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The viability and cell cycle progression of HMCs were determined with Cell Counting Kit-8 (CCK-8) or flow cytometry assays. The levels of several proteins and inflammatory factors in HMCs were analyzed by western blotting or enzyme-linked immunosorbent assay (ELISA). The relationship between CDKN2B-AS1 or WNT2B and miR-15b-5p was verified with dual-luciferase reporter assay. RESULTS CDKN2B-AS1 and WNT2B were upregulated while miR-15b-5p was downregulated in serum of DN patients and HG-treated HMCs. CDKN2B-AS1 inhibition reduced HG-induced viability, cell cycle progression, ECM accumulation, and inflammation response in HMCs. CDKN2B-AS1 regulated WNT2B expression via competitively binding to miR-15b-5p. MiR-15b-5p inhibitor reversed CDKN2B-AS1 knockdown-mediated influence on viability, cell cycle progression, ECM accumulation, and inflammation response of HG-treated HMCs. The repressive effect of miR-15b-5p mimic on viability, cell cycle progression, ECM accumulation, and inflammation response of HG-treated HMCs was abolished by WNT2B overexpression. CONCLUSION CDKN2B-AS1 regulated HG-induced HMC viability, cell cycle progression, ECM accumulation, and inflammation response via regulating the miR-15b-5p/WNT2B axis, provided a new mechanism for understanding the development of DN.
Collapse
Affiliation(s)
- Jing Chang
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Yanming Yu
- Department of Nephrology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Zhan Fang
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Haiyan He
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Dan Wang
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Jian Teng
- Department of Nephrology, Yantaishan Hospital, Yantai, Shandong, China
| | - Lina Yang
- Department of Nephrology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
14
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Du Q, Liu J, Tian D, Zhang X, Zhu J, Qiu W, Wu J. Long Noncoding RNA LINC00173 Promotes NUTF2 Expression Through Sponging miR-765 and Facilitates Tumorigenesis in Glioma. Cancer Manag Res 2020; 12:7211-7217. [PMID: 32848473 PMCID: PMC7429190 DOI: 10.2147/cmar.s262279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is one of the leading causes of cancer-related deaths. This study aimed to investigate the function and mechanism of long noncoding RNA (lncRNA) LINC00173 in the regulation of glioma progression. Methods LINC00173 expression was measured using qRT-PCR. Survival rate was analyzed through Kaplan–Meier method. CCK8, colony formation and EdU assays were performed to measure cell proliferation while transwell was used to determine cell migration and invasion. Luciferase reporter assay was conducted to test RNA interaction. Results LINC00173 expression was elevated in glioma tissues and cells. LINC00173 high expression predicted poor prognosis. Loss of LINC00173 inhibited proliferation, migration and invasion. LINC00173 interacted with miR-765 to enhance NUTF2 expression. MiR-765 expression was negatively correlated with LINC00173 and NUTF2 in glioma tissues. NUTF2 level was increased in glioma tissues. NUTF2 overexpression rescued the potential of proliferation, migration and invasion in LINC00173-silenced cells. Conclusion Our research demonstrated that LINC00173 promotes glioma progression through targeting miR-765/NUTF2 axis.
Collapse
Affiliation(s)
- Qinghua Du
- Neurosurgery Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Jin Liu
- Neurosurgery Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Da Tian
- Neurosurgery Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Xuelei Zhang
- Neurosurgery Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Jinwei Zhu
- Neurosurgery Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Weiwen Qiu
- Neurology Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| | - Jun Wu
- Pathology Department, Lishui City People's Hospital, Lishui 323000, People's Republic of China
| |
Collapse
|
16
|
Shen X, Li Y, He F, Kong J. LncRNA CDKN2B-AS1 Promotes Cell Viability, Migration, and Invasion of Hepatocellular Carcinoma via Sponging miR-424-5p. Cancer Manag Res 2020; 12:6807-6819. [PMID: 32801906 PMCID: PMC7414928 DOI: 10.2147/cmar.s240000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) results in high mortality and metastasis. In this study, the effects of long non-coding RNA (lncRNA) CDKN2B-AS1 on the progression of HCC were investigated. Materials and Methods LncRNA CDKN2B-AS1 expression of HCC cancer and adjacent tissues, and HCC cells were detected. Subsequently, CDKN2B-AS1 was overexpressed and silenced in HCC cells to observe the effects of CDKN2B-AS1 on the cell viability, migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells by performing cell counting kit-8 (CCK-8), wound-healing, Transwell, and Western blot. The target gene of CDKN2B-AS1 was predicted and verified to be miR-424-5p, whose expression in HCC cells with up- or down-regulation of CDKN2B-AS1 expression was determined. Moreover, the effects of miR-424-5p on cell viability, migration, and invasion and EMT of HCC cells were investigated with miR-424-5p up-regulation or down-regulation, together with overexpression or silencing of CDKN2B-AS1. Results CDKN2B-AS1 expression was increased in HCC tissues and cells. Silencing of CDKN2B-AS1 suppressed cell viability, migration, invasion, and EMT, while overexpression of CDKN2B-AS1 produced the opposite results. Furthermore, CDKN2B-AS1 was predicted and verified to target miR-424-5p and was confirmed to negatively modulate miR-424-5p expression. Moreover, overexpression of miR-424-5p partially suppressed the previously high cell viability, migration, and invasion, and activated EMT resulted from up-regulation of CDKN2B-AS1, while silencing of miR-424-5p elevated the cellular processes inhibited by silencing the expression of CDKN2B-AS1. Conclusion The present study revealed that high-expressed CDKN2B-AS1 may associate with the progression of HCC by affecting the cell viability, migration, invasion, and EMT of HCC cells by negatively regulating miR-424-5p.
Collapse
Affiliation(s)
- Xinying Shen
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yong Li
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Fan He
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jian Kong
- Department of Interventional Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
17
|
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Aging (Albany NY) 2020; 12:12160-12174. [PMID: 32554853 PMCID: PMC7343464 DOI: 10.18632/aging.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Rho-associated kinase 1 (ROCK1) regulates tumor metastasis by maintaining cellular cytoskeleton homeostasis. However, the precise role of ROCK1 in non-small-cell lung cancer (NSCLC) apoptosis remains largely unknown. In this study, we examined the function of ROCK1 in NSCLS survival using RNA interference-mediated knockdown. Our results showed that ROCK1 knockdown reduced A549 lung cancer cell viability in vitro. It also inhibited A549 cell migration and proliferation. Transfection of ROCK1 siRNA was associated with increased expression of large tumor suppressor kinase 2 (LATS2) and c-Jun N-terminal kinase (JNK). Moreover, ROCK1 knockdown-induced A549 cell apoptosis and inhibition of proliferation were suppressed by LATS2 knockdown or JNK inactivation, suggesting that ROCK1 deficiency triggers NSCLC apoptosis in a LATS2-JNK pathway-dependent manner. Functional analysis further demonstrated that ROCK1 knockdown dysregulated mitochondrial dynamics and inhibited mitochondrial biogenesis. This effect too was reversed by LATS2 knockdown or JNK inactivation. We have thus identified a potential pathway by which ROCK1 downregulation triggers apoptosis in NSCLC by inducing LATS2-JNK-dependent mitochondrial damage.
Collapse
|
18
|
The Interaction of lncRNA XLOC-2222497, AKR1C1, and Progesterone in Porcine Endometrium and Pregnancy. Int J Mol Sci 2020; 21:ijms21093232. [PMID: 32370225 DOI: 10.3390/ijms21093232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
The endometrium is an important tissue for pregnancy and plays an important role in reproduction. In this study, high-throughput transcriptome sequencing was performed in endometrium samples of Meishan and Yorkshire pigs on days 18 and 32 of pregnancy. Aldo-keto reductase family 1 member C1 (AKR1C1) was found to be a differentially expressed gene, and was identified by quantitative real-time PCR (qRT-PCR) and Western blot. Immunohistochemistry results revealed the cellular localization of the AKR1C1 protein in the endometrium. Luciferase activity assay demonstrated that the AKR1C1 core promoter region was located in the region from -706 to -564, containing two nuclear factor erythroid 2-related factor 2 (NRF2) binding sites (antioxidant response elements, AREs). XLOC-2222497 was identified as a nuclear long non-coding RNA (lncRNA) highly expressed in the endometrium. XLOC-2222497 overexpression and knockdown have an effect on the expression of AKR1C1. Endocrinologic measurement showed the difference in progesterone levels between Meishan and Yorkshire pigs. Progesterone treatment upregulated AKR1C1 and XLOC-2222497 expression in porcine endometrial epithelial cells. In conclusion, transcriptome analysis revealed differentially expressed transcripts during the early pregnancy process. Further experiments demonstrated the interaction of XLOC-2222497/AKR1C1/progesterone in the endometrium and provided new potential targets for pregnancy maintenance and its control.
Collapse
|