1
|
Oh D, Lee D, Heo J, Kweon J, Yong U, Jang J, Ahn YJ, Kim C. Contrast Agent-Free 3D Renal Ultrafast Doppler Imaging Reveals Vascular Dysfunction in Acute and Diabetic Kidney Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303966. [PMID: 37847902 PMCID: PMC10754092 DOI: 10.1002/advs.202303966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Indexed: 10/19/2023]
Abstract
To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.
Collapse
Affiliation(s)
- Donghyeon Oh
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Donghyun Lee
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinseok Heo
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jooyoung Kweon
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Uijung Yong
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinah Jang
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Yong Joo Ahn
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
2
|
Mee-Inta O, Hsieh CF, Chen DQ, Fan CH, Chiang YY, Liu CC, Sze CI, Gean PW, Wu PC, Yang MS, Huang PS, Chieh Wu P, Kuo YM, Huang CC. High-frequency ultrasound imaging for monitoring the function of meningeal lymphatic system in mice. ULTRASONICS 2023; 131:106949. [PMID: 36773481 DOI: 10.1016/j.ultras.2023.106949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Fang Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yi Chiang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mon-Shieh Yang
- College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Po-Sheng Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Park BK. Gray-Scale, Color Doppler, Spectral Doppler, and Contrast-Enhanced Renal Artery Ultrasound: Imaging Techniques and Features. J Clin Med 2022; 11:jcm11143961. [PMID: 35887726 PMCID: PMC9318477 DOI: 10.3390/jcm11143961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Renal artery stenosis (RAS) is increasingly being detected in elderly patients as life expectancy increases. RAS induces hypertension or reduces renal function. Computed tomography or magnetic resonance angiography are objective in detecting RAS but may cause iodine-induced nephrotoxicity or nephrogenic systemic fibrosis in patients with RAS. Ultrasound (US) is, by contrast, a noninvasive and real-time imaging modality useful in patients with reduced renal function. Renal US is not as sensitive for detecting RAS because this technique indirectly assesses the renal artery by analyzing intrarenal hemodynamic changes. Although, ideally, US would be used to directly evaluate the renal artery, its current utility for RAS detection remains unclear. The purpose of this review is to introduce how to assess renal artery with US, to describe imaging features of renal artery US, to compare renal artery US and renal US, and to show how to perform work-up in patients in whom RAS is suspected.
Collapse
Affiliation(s)
- Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
4
|
Abstract
Ultrasound imaging is a key investigatory step in the evaluation of chronic kidney disease and kidney transplantation. It uses nonionizing radiation, is noninvasive, and generates real-time images, making it the ideal initial radiographic test for patients with abnormal kidney function. Ultrasound enables the assessment of both structural (form and size) and functional (perfusion and patency) aspects of kidneys, both of which are especially important as the disease progresses. Ultrasound and its derivatives have been studied for their diagnostic and prognostic significance in chronic kidney disease and kidney transplantation. Ultrasound is rapidly growing more widely accessible and is now available even in handheld formats that allow for bedside ultrasound examinations. Given the trend toward ubiquity, the current use of kidney ultrasound demands a full understanding of its breadth as it and its variants become available. We described the current applications and future directions of ultrasound imaging and its variants in the context of chronic kidney disease and transplantation in this review.
Collapse
Affiliation(s)
- Rohit K. Singla
- MD and PhD Program, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Address for Correspondence: Rohit Singla, MASc, The University of British Columbia, 2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4.
| | - Matthew Kadatz
- Department of Nephrology, University of British Columbia, Vancouver, Canada
| | - Robert Rohling
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Christopher Nguan
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Contrast-enhanced ultrasound of the kidneys: principles and potential applications. Abdom Radiol (NY) 2022; 47:1369-1384. [PMID: 35150315 DOI: 10.1007/s00261-022-03438-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is an extension and an enhanced form of ultrasound that allows real-time evaluation of the various structures in different vascular phases. The last decade has witnessed a widespread expansion of CEUS applications beyond the liver. It has shown fair potential in kidneys and its diagnostic efficacy is comparable to CT and MRI. Ultrasound is the well-accepted screening modality for renal pathologies, however, it underperforms in the characterization of the renal masses. CEUS can be beneficial in such cases as it can help in the characterization of such incidental masses in the same sitting. It has an excellent safety profile with no risk of radiation or contract-related nephropathy. It can aid in the correct categorization of renal cysts into one of the Bosniak classes and has proven its worth especially in complex cysts or indeterminate renal masses (especially Bosniak Category IIF and III). Few studies also describe its potential role in solid masses and in differentiating benign from malignant masses. Other areas of interest include infections, infarctions, trauma, follow-up of local ablative procedures, and VUR. Through this review, the readers shall get an insight into the various applications of CEUS in kidneys, with imaging examples.
Collapse
|
6
|
CT findings in renovascular injuries following abdominal trauma: a pictorial review. Emerg Radiol 2022; 29:595-604. [PMID: 35122178 DOI: 10.1007/s10140-022-02027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Renal vascular injuries are more devastating than parenchymal injuries alone, thus account for higher injury grade and require prompt recognition. Revised AAST organ injury scale (OIS) for renal trauma has incorporated CT-diagnosed vascular injuries into renal injury grading which includes pseudoaneurysm and arteriovenous fistula, along with addition of some new descriptors of renovascular injury. Dual-phase contrast-enhanced CT (with both arterial and venous phase) can easily pick up renovascular injuries and is the modality of choice for imaging renovascular trauma. Radiologist should be well versed with the imaging findings of renovascular injuries so that accurate injury grading can be done and further management can be planned at the earliest.
Collapse
|
7
|
Ren M, Huang L, Ye X, Xv Z, Ouyang C, Han Z. Evaluation of Cardiac Space-Occupying Lesions by Myocardial Contrast Echocardiography and Transesophageal Echocardiography. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2066033. [PMID: 35126908 PMCID: PMC8808222 DOI: 10.1155/2022/2066033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/18/2022]
Abstract
Heart space-occupying lesions are a disease that occurs frequently in clinical setting, and therefore, it is important to diagnose and treat this type of pathologies properly. Angiographic echocardiography and transesophageal sonogram are widely used for clinical diagnosis. Their application provides a guarantee for the diagnosis of cardiac space-occupying lesions. In this paper, the application of cardiac contrast echocardiography and transesophageal echocardiography in cardiac space-occupying lesions was studied. Prediction of cardiac lesions can accurately determine the nature of cardiac occupancies and provide a basis for clinical diagnosis and management judgments. The results of pathological analysis and experimental comparison showed that myocardial contrast echocardiography can accurately distinguish tumor and thrombus and make contribution to patients taking appropriate medical measures. At the same time, it can compare conventional transthoracic echocardiography and transesophageal echocardiography. The results showed that TEE could clearly show the cardiac lesions. The experimental data of 76.9% confirmed cases showed that the diagnostic accuracy is greatly improved. TEE can also clearly show small thrombus that TTE cannot, in which 2DTEE can clearly show the boundary between the space-occupying and surrounding tissues, and whether there is a clear boundary between the space-occupying and surrounding tissues is an important distinguishing point of benign and malignant tumors. In addition, the TEE probe can also be used for large angle imaging and multiangle rotation, so as to determine the tumor boundary and the spatial position relationship between the tumor and the surrounding tissue. All in all, myocardial contrast echocardiography and transesophageal echocardiography have better clinical application effect on cardiac space-occupying lesions.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Zhifeng Xv
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| |
Collapse
|
8
|
Grajo JR, Batra NV, Bozorgmehri S, Magnelli LL, O'Malley P, Terry R, Su LM, Crispen PL. Association between nuclear grade of renal cell carcinoma and the aorta-lesion-attenuation-difference. Abdom Radiol (NY) 2021; 46:5629-5638. [PMID: 34463815 DOI: 10.1007/s00261-021-03260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION AND BACKGROUND Several features noted on renal mass biopsy (RMB) can influence treatment selection including tumor histology and nuclear grade. However, there is poor concordance between renal cell carcinoma (RCC) nuclear grade on RMB compared to nephrectomy specimens. Here, we evaluate the association of nuclear grade with aorta-lesion-attenuation-difference (ALAD) values determined on preoperative CT scan. METHODS AND MATERIALS A retrospective review of preoperative CT scans and surgical pathology was performed on patients undergoing nephrectomy for solid renal masses. ALAD was calculated by measuring the difference in Hounsfield units (HU) between the aorta and the lesion of interest on the same image slice on preoperative CT scan. The discriminative ability of ALAD to differentiate low-grade (nuclear grade 1 and 2) and high-grade (nuclear grade 3 and 4) tumors was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under curve (AUC) using ROC analysis. Sub-group analysis by histologic sub-type was also performed. RESULTS A total of 368 preoperative CT scans in patients with RCC on nephrectomy specimen were reviewed. Median patient age was 61 years (IQR 52-68). The majority of patients were male, 66% (243/368). Tumor histology was chromophobe RCC in 7.6%, papillary RCC in 15.5%, and clear cell RCC in 76.9%. The majority, 69.3% (253/365) of tumors, were stage T1a. Nuclear grade was grade 1 in 5.46% (19/348), grade 2 in 64.7% (225/348), grade 3 in 26.2% (91/348), and grade 4 in 3.2% (11/348). Nephrographic ALAD values for grade 1, 2, 3, and 4 were 73.7, 46.5, 36.4, and 43.1, respectively (p = 0.0043). Nephrographic ALAD was able to differentiate low-grade from high-grade RCC with a sensitivity of 32%, specificity of 89%, PPV of 86%, and NPV of 36%. ROC analysis demonstrated the predictive utility of nephrographic ALAD to predict high- versus low-grade RCC with an AUC of 0.60 (95% CI 0.51-0.69). CONCLUSION ALAD was significantly associated with nuclear grade in our nephrectomy series. Strong specificity and PPV for the nephrographic phrase demonstrate a potential role for ALAD in the pre-operative setting that may augment RMB findings in assessing nuclear grade of RCC. Although this association was statistically significant, the clinical utility is limited at this time given the results of the statistical analysis (relatively poor ROC analysis). Sub-group analysis by histologic subtype yielded very similar diagnostic performance and limitations of ALAD. Further studies are necessary to evaluate this relationship further.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Nikhil V Batra
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shahab Bozorgmehri
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laura L Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Padraic O'Malley
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Russell Terry
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Paul L Crispen
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Lyske J, Mathew RP, Hutchinson C, Patel V, Low G. Multimodality imaging review of focal renal lesions. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-020-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Focal lesions of the kidney comprise a spectrum of entities that can be broadly classified as malignant tumors, benign tumors, and non-neoplastic lesions. Malignant tumors include renal cell carcinoma subtypes, urothelial carcinoma, lymphoma, post-transplant lymphoproliferative disease, metastases to the kidney, and rare malignant lesions. Benign tumors include angiomyolipoma (fat-rich and fat-poor) and oncocytoma. Non-neoplastic lesions include infective, inflammatory, and vascular entities. Anatomical variants can also mimic focal masses.
Main body of the abstract
A range of imaging modalities are available to facilitate characterization; ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), magnetic resonance (MR) imaging, and positron emission tomography (PET), each with their own strengths and limitations. Renal lesions are being detected with increasing frequency due to escalating imaging volumes. Accurate diagnosis is central to guiding clinical management and determining prognosis. Certain lesions require intervention, whereas others may be managed conservatively or deemed clinically insignificant. Challenging cases often benefit from a multimodality imaging approach combining the morphology, enhancement and metabolic features.
Short conclusion
Knowledge of the relevant clinical details and key imaging features is crucial for accurate characterization and differentiation of renal lesions.
Collapse
|
10
|
Grajo JR, Batra NV, Bozorgmehri S, Magnelli LL, Pavlinec J, O'Malley P, Su LM, Crispen PL. Validation of aorta-lesion-attenuation difference on preoperative contrast-enhanced computed tomography scan to differentiate between malignant and benign oncocytic renal tumors. Abdom Radiol (NY) 2021; 46:3269-3279. [PMID: 33665734 DOI: 10.1007/s00261-021-02971-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We previously noted that the aorta-lesion-attenuation difference (ALAD) determined on CT scan discriminated well between chromophobe RCC and oncocytoma. The current evaluation seeks to validate these initial findings in a second cohort of nephrectomy patients. METHODS A retrospective review of preoperative CT scans and surgical pathology was performed on patients undergoing nephrectomy for small, solid renal masses. ALAD was calculated by measuring the difference in Hounsfield units (HU) between the aorta and the lesion of interest on the same image slice on preoperative CT scan. The discriminative ability of ALAD to differentiate malignant pathology from oncocytoma was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under curve (AUC) using ROC analysis. RESULTS Twenty-one preoperative CT scans and corresponding pathology reports were reviewed and included in the validation cohort. ALAD values were calculated during the excretory and nephrographic phases. Compared to the training cohort, patients in the validation cohort were significantly older (62 versus 59 years old), had larger tumors (3.7 versus 2.7 cm), and higher stage disease (59% versus 79% T1a disease). Nephrographic ALAD was able to differentiate malignant pathology from oncocytoma in the training and validation cohorts with a sensitivity of 84% versus 73%, specificity of 86% and 67%, PPV of 98% versus 91%, and NPV of 33% versus 35%. The AUC for malignant pathology versus oncocytoma in the validation cohort was 0.72 (95% CI 0.63-0.82). Nephrographic ALAD was able to differentiate chromophobe RCC from oncocytoma in the training and validation cohorts with a sensitivity of 100% versus 67%, specificity of 86% versus 67%, PPV of 75% versus 43%, and NPV of 100% versus 84%. The AUC for chromophobe RCC versus oncocytoma in the validation cohort was 0.72 (95% CI 0.48-0.96). CONCLUSIONS The ability of ALAD to discriminate between chromophobe RCC and oncocytoma was diminished in the validation cohort compared to the training cohort, but remained significant. The current findings support further investigation in the role of ALAD in the management of patients with indeterminate diagnoses of oncocytic neoplasm.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Nikhil V Batra
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shahab Bozorgmehri
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laura L Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Jonathan Pavlinec
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Padraic O'Malley
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Paul L Crispen
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
11
|
Tsili AC, Andriotis E, Gkeli MG, Krokidis M, Stasinopoulou M, Varkarakis IM, Moulopoulos LA. The role of imaging in the management of renal masses. Eur J Radiol 2021; 141:109777. [PMID: 34020173 DOI: 10.1016/j.ejrad.2021.109777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022]
Abstract
The wide availability of cross-sectional imaging is responsible for the increased detection of small, usually asymptomatic renal masses. More than 50 % of renal cell carcinomas (RCCs) represent incidental findings on noninvasive imaging. Multimodality imaging, including conventional US, contrast-enhanced US (CEUS), CT and multiparametric MRI (mpMRI) is pivotal in diagnosing and characterizing a renal mass, but also provides information regarding its prognosis, therapeutic management, and follow-up. In this review, imaging data for renal masses that urologists need for accurate treatment planning will be discussed. The role of US, CEUS, CT and mpMRI in the detection and characterization of renal masses, RCC staging and follow-up of surgically treated or untreated localized RCC will be presented. The role of percutaneous image-guided ablation in the management of RCC will be also reviewed.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Efthimios Andriotis
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Myrsini G Gkeli
- 1st Department of Radiology, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Miltiadis Krokidis
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece; Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Myrsini Stasinopoulou
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Ioannis M Varkarakis
- 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, 15126, Athens, Greece.
| | - Lia-Angela Moulopoulos
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece.
| | | |
Collapse
|
12
|
Sun Y, Cui L, Wang S, Shi T, Hao Y, Lei Y. Comparative study of two contrast agents for intraoperative identification of sentinel lymph nodes in patients with early breast cancer. Gland Surg 2021; 10:1638-1645. [PMID: 34164308 DOI: 10.21037/gs-21-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The use of contrast-enhanced ultrasound (CEUS) to locate sentinel lymph nodes (SLNs) in breast cancer has been studied more and more in recent years. This prospective study aimed to compare periareolar injection of two different contrast agents, SonoVue® (SNV) and Sonazoid® (SNZ), followed by CEUS to identify SLNs in breast cancer patients with clinically negative nodes. Methods A total of 205 patients with T1-2N0M0 breast cancer were divided into the SNV group and SNZ group. All were administered a periareolar injection of SNV or SNZ and underwent US to identify contrast-enhanced SLNs. Each contrast-enhanced SLN underwent a biopsy with blue dye and examined again by CEUS in vitro. Results In all cases, contrast-enhanced lymphatic vessels were clearly visualized using US soon after the periareolar injection of SNZ, and the SLNs were easily identified. The SLN identification rates were 75.27% (210/279) for SNV and 93.58% (102/109) for SNZ. Although the accuracy of detecting SLN metastasis was slightly different between the two groups, there was no statistically significant difference between those groups (P=0.615). Moreover, it was possible to identify SLNs in vitro in the SNZ group, and these could be compared with the lymph nodes (LNs) located using SNZ during the preoperative stage and with blue dye during the procedure. This helped in determining the resection requirements. Conclusions When comparing the subdermal use of SNV and SNZ, no significant differences in the number of detected SLNs and the diagnosis of metastatic LNs were observed. Because SLNs can be detected for a longer time in living tissues with SNZ, this contrast agent may provide more intraoperative information for complete resection of all preoperative localization of SLN.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Shunmin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Tan Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yunxia Hao
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Yutao Lei
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Rudnick MR, Wahba IM, Leonberg-Yoo AK, Miskulin D, Litt HI. Risks and Options With Gadolinium-Based Contrast Agents in Patients With CKD: A Review. Am J Kidney Dis 2020; 77:517-528. [PMID: 32861792 DOI: 10.1053/j.ajkd.2020.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/01/2020] [Indexed: 01/19/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) improve the diagnostic capabilities of magnetic resonance imaging. Although initially believed to be without major adverse effects, GBCA use in patients with severe chronic kidney disease (CKD) was demonstrated to cause nephrogenic systemic fibrosis (NSF). Restrictive policies of GBCA use in CKD and selective use of GBCAs that bind free gadolinium more strongly have resulted in the virtual elimination of NSF cases. Contemporary studies of the use of GBCAs with high binding affinity for free gadolinium in severe CKD demonstrate an absence of NSF. Despite these observations and the limitations of contemporary studies, physicians remain concerned about GBCA use in severe CKD. Concerns of GBCA use in severe CKD are magnified by recent observations demonstrating gadolinium deposition in brain and a possible systemic syndrome attributed to GBCAs. Radiologic advances have resulted in several new imaging modalities that can be used in the severe CKD population and that do not require GBCA administration. In this article, we critically review GBCA use in patients with severe CKD and provide recommendations regarding GBCA use in this population.
Collapse
Affiliation(s)
- Michael R Rudnick
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA.
| | - Ihab M Wahba
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA; Corporal Michael J Crescenz Philadelphia Veterans Affairs Hospital Philadelphia, PA
| | - Amanda K Leonberg-Yoo
- Division of Nephrology, Perelman School of Medicine at the University of Pennsylvania, PA
| | - Dana Miskulin
- Division of Nephrology, Tufts University School of Medicine, Boston, MA
| | - Harold I Litt
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Erlichman DB, Weiss A, Koenigsberg M, Stein MW. Contrast enhanced ultrasound: A review of radiology applications. Clin Imaging 2019; 60:209-215. [PMID: 31927496 DOI: 10.1016/j.clinimag.2019.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Ultrasound contrast agents have been used for decades in Europe and Asia for cardiac and abdominal imaging and are now being more commonly utilized in the United States for radiology applications. Our article reviews the basics of contrast-enhanced ultrasound including how the contrast agent works, advantages and disadvantages, as well as pearls and pitfalls to help the radiologist efficiently integrate this technology into day-to-day clinical practice. We also discuss the diagnosis of focal hepatic lesions as well as off-label applications such as evaluation of renal masses.
Collapse
Affiliation(s)
- David B Erlichman
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, United States of America.
| | - Amanda Weiss
- Northwell Health System, Zucker School of Medicine at Hofstra/Northwell, United States of America
| | - Mordecai Koenigsberg
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, United States of America
| | - Marjorie W Stein
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, United States of America
| |
Collapse
|
15
|
Tedesco G, Sarno A, Rizzo G, Grecchi A, Testa I, Giannotti G, D’Onofrio M. Clinical use of contrast-enhanced ultrasound beyond the liver: a focus on renal, splenic, and pancreatic applications. Ultrasonography 2019; 38:278-288. [PMID: 31230431 PMCID: PMC6769197 DOI: 10.14366/usg.18061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 12/11/2022] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is a relatively novel, but increasingly used, diagnostic imaging modality. In recent years, due to its safety, quickness, and repeatability, several studies have demonstrated the accuracy, specificity, and sensitivity of CEUS. The European Federation of Societies for Ultrasound in Medicine and Biology has recently updated the previous guidelines from 2012 for the use of CEUS in non-hepatic applications. This review deals with the clinical use and applications of CEUS for the evaluation of non-hepatic abdominal organs, focusing on renal, splenic, and pancreatic applications.
Collapse
Affiliation(s)
- Giorgia Tedesco
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Alessandro Sarno
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Giulio Rizzo
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Annamaria Grecchi
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Ilaria Testa
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Gabriele Giannotti
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Mirko D’Onofrio
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Nyankima AG, Kasoji S, Cianciolo R, Dayton PA, Chang EH. Histological and blood chemistry examination of the rodent kidney after exposure to flash-replenishment ultrasound contrast imaging. ULTRASONICS 2019; 98:1-6. [PMID: 31121515 PMCID: PMC6710155 DOI: 10.1016/j.ultras.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 05/12/2023]
Abstract
The purpose of this work is to investigate whether imaging sequences of flash-replenishment contrast enhanced ultrasound (CEUS) of the kidney result in chronic or acute bioeffects. Kidneys of female Fischer 344 rats were imaged using the flash-replenishment technique. Animals were separated into four groups (N = 31). Imaging was conducted with a 4C1 probe, driven by an Acuson Sequoia system with Definity microbubbles as the ultrasound contrast agent. During the flash phase of the imaging sequence, one kidney in each animal was exposed to either a mechanical index (MI) of 1.0 or 1.9. For each MI, half of the animals were sacrificed shortly after imaging (4 h) or after 2 weeks. A blinded veterinary nephropathologist reviewed the histopathology of both the imaged and control (non-imaged) kidney. Blood urea nitrogen (BUN) was measured for each animal prior to imaging and at the time of necropsy. Histopathology assessments in both the 1.0 and 1.9 MI groups revealed no signs of hemorrhage at either the 4-h or 2-week time point. BUN showed minor but statistically significant elevations in both the 1.0 and 1.9 MI groups, but no significant difference was present at the 2-week time point in the 1.0 MI group. All BUN levels (at both time points) remained in the normal range. In conclusion, CEUS with flash-replenishment imaging sequences did not result in kidney bioeffects observable with histology at early or late time points. Increases in BUN levels were observed after imaging, but were minimized when using a moderate MI (1.0).
Collapse
Affiliation(s)
- A Gloria Nyankima
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Sandeep Kasoji
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Emily H Chang
- UNC Kidney Center and Division of Nephrology & Hypertension, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Rossi SH, Prezzi D, Kelly-Morland C, Goh V. Imaging for the diagnosis and response assessment of renal tumours. World J Urol 2018; 36:1927-1942. [PMID: 29948048 PMCID: PMC6280818 DOI: 10.1007/s00345-018-2342-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Imaging plays a key role throughout the renal cell carcinoma (RCC) patient pathway, from diagnosis and staging of the disease, to the assessment of response to therapy. This review aims to summarise current knowledge with regard to imaging in the RCC patient pathway, highlighting recent advances and challenges. METHODS A literature review was performed using Medline. Particular focus was paid to RCC imaging in the diagnosis, staging and response assessment following therapy. RESULTS Characterisation of small renal masses (SRM) remains a diagnostic conundrum. Contrast-enhanced ultrasound (CEUS) has been increasingly applied in this field, as have emerging technologies such as multiparametric MRI, radiomics and molecular imaging with 99mtechnetium-sestamibi single photon emission computed tomography/CT. CT remains the first-line modality for staging of locoregional and suspected metastatic disease. Although the staging accuracy of CT is good, limitations in determining nodal status persist. Response assessment following ablative therapies remains challenging, as reduction in tumour size may not occur. The pattern of enhancement on CT may be a more reliable indicator of treatment success. CEUS may also have a role in monitoring response following ablation. Response assessments following anti-angiogenic and immunotherapies in advanced RCC is an evolving field, with a number of alternative response criteria being proposed. Tumour response patterns may vary between different immunotherapy agents and tumour types; thus, future response criteria modifications may be inevitable. CONCLUSION The diagnosis and characterisation of SRM and response assessment following targeted therapy for advanced RCC are key challenges which warrant further research.
Collapse
Affiliation(s)
- Sabrina H Rossi
- Academic Urology Group, University of Cambridge, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Davide Prezzi
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Christian Kelly-Morland
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Vicky Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
- Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
18
|
Liu X, Jang HJ, Khalili K, Kim TK, Atri M. Successful Integration of Contrast-enhanced US into Routine Abdominal Imaging. Radiographics 2018; 38:1454-1477. [DOI: 10.1148/rg.2018170152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyang Liu
- From the Department of Medical Imaging, University of Toronto, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Hyun-Jung Jang
- From the Department of Medical Imaging, University of Toronto, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Korosh Khalili
- From the Department of Medical Imaging, University of Toronto, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Tae Kyoung Kim
- From the Department of Medical Imaging, University of Toronto, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Mostafa Atri
- From the Department of Medical Imaging, University of Toronto, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|