1
|
Lee CC, Lui PW, Gao WW, Gao Z. Detection of Rat Pain-Related Grooming Behaviors Using Multistream Recurrent Convolutional Networks on Day-Long Video Recordings. Bioengineering (Basel) 2024; 11:1180. [PMID: 39767998 PMCID: PMC11673758 DOI: 10.3390/bioengineering11121180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
In experimental pain studies involving animals, subjective pain reports are not feasible. Current methods for detecting pain-related behaviors rely on human observation, which is time-consuming and labor-intensive, particularly for lengthy video recordings. Automating the quantification of these behaviors poses substantial challenges. In this study, we developed and evaluated a deep learning, multistream algorithm to detect pain-related grooming behaviors in rats. Pain-related grooming behaviors were induced by injecting small amounts of pain-inducing chemicals into the rats' hind limbs. Day-long video recordings were then analyzed with our algorithm, which initially filtered out non-grooming segments. The remaining segments, referred to as likely grooming clips, were used for model training and testing. Our model, a multistream recurrent convolutional network, learned to differentiate grooming from non-grooming behaviors within these clips through deep learning. The average validation accuracy across three evaluation methods was 88.5%. We further analyzed grooming statistics by comparing the duration of grooming episodes between experimental and control groups. Results demonstrated statistically significant changes in grooming behavior consistent with pain expression.
Collapse
Affiliation(s)
- Chien-Cheng Lee
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | | | - Wei-Wei Gao
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Zhongjian Gao
- School of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, China
| |
Collapse
|
2
|
Gao E, Sun X, Thorne RF, Zhang XD, Li J, Shao F, Ma J, Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J Transl Med 2023; 21:401. [PMID: 37340421 DOI: 10.1186/s12967-023-04232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Although the executive pathways of senescence are known, the underlying control mechanisms are diverse and not fully understood, particularly how cancer cells avoid triggering senescence despite experiencing exacerbated stress conditions within the tumor microenvironment. METHODS Mass spectrometry (MS)-based proteomic screening was used to identify differentially regulated genes in serum-starved hepatocellular carcinoma cells and RNAi employed to determine knockdown phenotypes of prioritized genes. Thereafter, gene function was investigated using cell proliferation assays (colony-formation, CCK-8, Edu incorporation and cell cycle) together with cellular senescence assays (SA-β-gal, SAHF and SASP). Gene overexpression and knockdown techniques were applied to examine mRNA and protein regulation in combination with luciferase reporter and proteasome degradation assays, respectively. Flow cytometry was applied to detect changes in cellular reactive oxygen species (ROS) and in vivo gene function examined using a xenograft model. RESULTS Among the genes induced by serum deprivation, NIPSNAP1 was selected for investigation. Subsequent experiments revealed that NIPSNAP1 promotes cancer cell proliferation and inhibits P27-dependent induction of senescence via dual mechanisms. Firstly, NIPSNAP1 maintains the levels of c-Myc by sequestering the E3 ubiquitin ligase FBXL14 to prevent the proteasome-mediated turnover of c-Myc. Intriguingly, NIPSNAP1 levels are restrained by transcriptional repression mediated by c-Myc-Miz1, with repression lifted in response to serum withdrawal, thus identifying feedback regulation between NIPSNAP1 and c-Myc. Secondly, NIPSNAP1 was shown to modulate ROS levels by promoting interactions between the deacetylase SIRT3 and superoxide dismutase 2 (SOD2). Consequent activation of SOD2 serves to maintain cellular ROS levels below the critical levels required to induce cell cycle arrest and senescence. Importantly, the actions of NIPSNAP1 in promoting cancer cell proliferation and preventing senescence were recapitulated in vivo using xenograft models. CONCLUSIONS Together, these findings reveal NIPSNAP1 as an important mediator of c-Myc function and a negative regulator of cellular senescence. These findings also provide a theoretical basis for cancer therapy where targeting NIPSNAP1 invokes cellular senescence.
Collapse
Affiliation(s)
- Enyi Gao
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiaoya Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rick Francis Thorne
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Xu Dong Zhang
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Jinming Li
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China.
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Fathi E, Yarbro JM, Homayouni R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays 2021; 43:e2100014. [PMID: 33852167 PMCID: PMC10577685 DOI: 10.1002/bies.202100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Since their discovery over two decades ago, the molecular and cellular functions of the NIPSNAP family of proteins (NIPSNAPs) have remained elusive until recently. NIPSNAPs interact with a variety of mitochondrial and cytoplasmic proteins. They have been implicated in multiple cellular processes and associated with different physiologic and pathologic conditions, including pain transmission, Parkinson's disease, and cancer. Recent evidence demonstrated a direct role for NIPSNAP1 and NIPSNAP2 proteins in regulation of mitophagy, a process that is critical for cellular health and maintenance. Importantly, NIPSNAPs contain a 110 amino acid domain that is evolutionary conserved from mammals to bacteria. However, the molecular function of the conserved NIPSNAP domain and its potential role in mitophagy have not been explored. It stands to reason that the highly conserved NIPSNAP domain interacts with a substrate that is ubiquitously present across all species and can perhaps act as a sensor for mitochondrial health.
Collapse
Affiliation(s)
- Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramin Homayouni
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
- Oakland University William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| |
Collapse
|
4
|
Zhao H, Wu M, Liu S, Tang X, Yi X, Li Q, Wang S, Sun X. Liver Expression of IGF2 and Related Proteins in ZBED6 Gene-Edited Pig by RNA-Seq. Animals (Basel) 2020; 10:ani10112184. [PMID: 33266436 PMCID: PMC7700129 DOI: 10.3390/ani10112184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Zinc finger BED-type containing 6 (ZBED6), as a regulatory factor, has different regulatory mechanisms in animal development. The intron of insulin-like growth factor 2 (IGF2) regulates the development of animal muscle and adipose by combining with the binding site of ZBED6. As a member of the insulin-like growth factor family, IGF2 plays an important role in embryonic growth and development, cell proliferation, muscle growth and genome imprinting. In order to further study the regulatory mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed differently expressed genes of the transcriptome of ZBED6-SKO pig liver. The results showed that the partial knockout of ZBED6 could affect the secretion of IGF2 in pig liver but had no significant difference at the protein level. This research provides a new idea for the interaction between IGF2 and ZBED6. Abstract Zinc finger BED-type containing 6 (ZBED6), a highly conservative transcription factor of placental mammals, has conservative interaction of insulin-like growth factor 2 (IGF2) based on the 16 bp binding sites of ZBED6 on the IGF2 sequence. IGF2 is related to embryo growth and cell proliferation. At the same time, its functions in muscle and adipose in mammals have been widely mentioned in recent studies. To further investigate the mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed the transcriptome of ZBED6-SKO pig liver. Through RNA-seq, we captured nine up-regulated genes and eight down-regulated genes which related to lipid metabolism. The results showed that the mRNA of IGF2 had an upward trend after the partial knockout of ZBED6 in liver and had no significant difference in protein expression of IGF2. In summary, ZBED6-SKO could affect the secretion of IGF2 in pig liver and its own lipid metabolism. Our research has provided basic information for revealing the regulatory mechanism of the interaction between ZBED6 and IGF2 in mammals.
Collapse
Affiliation(s)
- Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
5
|
Neurobiology of environmental enrichment in pigs: hanges in monoaminergic neurotransmitters in several brain areas and in the hippocampal proteome. J Proteomics 2020; 229:103943. [DOI: 10.1016/j.jprot.2020.103943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/18/2020] [Accepted: 08/09/2020] [Indexed: 02/08/2023]
|
6
|
Mechanical allodynia in mice with tenascin-X deficiency associated with Ehlers-Danlos syndrome. Sci Rep 2020; 10:6569. [PMID: 32300146 PMCID: PMC7162960 DOI: 10.1038/s41598-020-63499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/07/2020] [Indexed: 12/22/2022] Open
Abstract
Tenascin-X (TNX) is a member of the extracellular matrix glycoprotein tenascin family, and TNX deficiency leads to Ehlers-Danlos syndrome, a heritable human disorder characterized mostly by skin hyperextensibility, joint hypermobility, and easy bruising. TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. However, the molecular mechanisms by which TNX deficiency complicates pain are unknown. Here, we examined the nociceptive behavioral responses of TNX-deficient mice. Compared with wild-type mice, TNX-deficient mice exhibited mechanical allodynia but not thermal hyperalgesia. TNX deficiency also increased pain sensitivity to chemical stimuli and aggravated early inflammatory pain elicited by formalin. TNX-deficient mice were significantly hypersensitive to transcutaneous sine wave stimuli at frequencies of 250 Hz (Aδ fiber responses) and 2000 Hz (Aβ fiber responses), but not to stimuli at frequency of 5 Hz (C fiber responses). In addition, the phosphorylation levels of extracellular signal-related kinase, an active neuronal marker, and the activity of NADPH-diaphorase, a neuronal nitric oxide activation marker, were enhanced in the spinal dorsal horns of TNX-deficient mice. These results suggest that TNX deficiency contributes to the development of mechanical allodynia and hypersensitivity to chemical stimuli, and it induces hypersensitization of myelinated A fibers and activation of the spinal dorsal horn.
Collapse
|
7
|
Avenali L, Abate Fulas O, Sondermann J, Narayanan P, Gomez-Varela D, Schmidt M. Nocistatin sensitizes TRPA1 channels in peripheral sensory neurons. Channels (Austin) 2017; 11:11-19. [PMID: 27362459 DOI: 10.1080/19336950.2016.1207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.
Collapse
Affiliation(s)
- Luca Avenali
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| | - Oli Abate Fulas
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| | - Julia Sondermann
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| | - Pratibha Narayanan
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| | - David Gomez-Varela
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| | - Manuela Schmidt
- a Max Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group , Goettingen , Germany
| |
Collapse
|