1
|
Xu C, Wang Y, Ni C, Xu M, Yin C, He Q, Ma B, Fu J, Zhao B, Chen L, Zhi T, Wei S, Cheng L, Xu H, Xiao J, Yang L, Xu Q, Kuang J, Liu B, Zhou Q, Lin X, Yao M, Ni H. Histone modifications and Sp1 promote GPR160 expression in bone cancer pain within rodent models. EMBO Rep 2024; 25:5429-5455. [PMID: 39448865 PMCID: PMC11624276 DOI: 10.1038/s44319-024-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Bone cancer pain (BCP) affects ~70% of patients in advanced stages, primarily due to bone metastasis, presenting a substantial therapeutic challenge. Here, we profile orphan G protein-coupled receptors in the dorsal root ganglia (DRG) following tumor infiltration, and observe a notable increase in GPR160 expression. Elevated Gpr160 mRNA and protein levels persist from postoperative day 6 for over 18 days in the affected DRG, predominantly in small-diameter C-fiber type neurons specific to the tibia. Targeted interventions, including DRG microinjection of siRNA or AAV delivery, mitigate mechanical allodynia, cold, and heat hyperalgesia induced by the tumor. Tumor infiltration increases DRG neuron excitability in wild-type mice, but not in Gpr160 gene knockout mice. Tumor infiltration results in reduced H3K27me3 and increased H3K27ac modifications, enhanced binding of the transcription activator Sp1 to the Gpr160 gene promoter region, and induction of GPR160 expression. Modulating histone-modifying enzymes effectively alleviated pain behavior. Our study delineates a novel mechanism wherein elevated Sp1 levels facilitate Gpr160 gene transcription in nociceptive DRG neurons during BCP in rodents.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Chengyu Yin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Bing Ma
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Baoxia Zhao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Tong Zhi
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Shirong Wei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, 38 Shengli Middle Road, 233000, Bengbu, China
| | - Hui Xu
- Department of Anesthesiology, The First People's Hospital of Bengbu, 233000, Bengbu, China
| | - Jiajun Xiao
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-Shang Road, 233000, Bengbu, China
| | - Lei Yang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Qingqing Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China
| | - Xuewu Lin
- Department of Pain Medicine, The First Affiliated Hospital of Bengbu Medical University, 233000, Bengbu, China.
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, 314001, Jiaxing, China.
| |
Collapse
|
2
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
3
|
Chang YT, Ling J, Gu JG. Effects of GABA B receptor activation on excitability of IB4-positive maxillary trigeminal ganglion neurons: Possible involvement of TREK2 activation. Mol Pain 2021; 17:17448069211042963. [PMID: 34461754 PMCID: PMC8411610 DOI: 10.1177/17448069211042963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
IB4-positive maxillary trigeminal ganglion (TG) neurons are a subtype of afferent neurons involving nociception in orofacial regions, and excitability of these neurons is associated with orofacial nociceptive sensitivity. TREK-2 channel is a member of two-pore domain potassium (K2P) channel family mediating leak K+ currents. It has been shown previously that TREK-2 channel activity can be enhanced following GABAB receptor activation, leading to a reduction of cortical neuron excitability. In the present study, we have characterized TREK-2 channel expression on maxillary TG neurons and investigated the effect of the GABAB agonist baclofen on electrophysiological properties of small-sized maxillary TG neurons of rats. We show with immunohistochemistry that TREK-2 channels are predominantly expressed in small-sized IB4-positive maxillary TG neurons. Patch-clamp recordings on neurons in ex vivo TG preparations show that baclofen hyperpolarizes resting membrane potentials, increases outward leak currents, and decreases input resistances in IB4-positive maxillary TG neurons. Moreover, baclofen significantly reduces action potential (AP) firing in IB4-positive maxillary TG neurons. In contrast, baclofen shows no significant effect on electrophysiological properties of small-sized nociceptive-like and non-nociceptive-like maxillary trigeminal neurons that are IB4-negatve. Our results suggest that TREK-2 channel activity can be enhanced by baclofen, leading to reduced excitability of IB4-positive maxillary TG neurons. This finding provides new insights into the role of TREK-2 and GABAB receptors in controlling nociceptive sensitivity in orofacial regions, which may have therapeutic implications.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Anesthesiology and Perioperative
Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative
Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative
Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|