1
|
Xia G, Qian J, Wang Y, Xiao F. METTL14-mediated m6A modification of TRPA1 promotes acute visceral pain induced by uterine cervical dilation by promoting NR2B phosphorylation. Cell Signal 2025; 127:111610. [PMID: 39826676 DOI: 10.1016/j.cellsig.2025.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain. METHODS The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing. Validate UCD model by measuring spinal c-Fos expression and EMG. The levels of TRPA1 and p-NR2B were evaluated by qRT-PCR and western blot,and m6A level was detected by the kit. RNA Immunoprecipitation was adopted to determine the binding between TRPA1 and METTL14. Neurons were isolated from rat dorsal root ganglia (DRG), exposed to SAH treatment, and subsequently subjected to actinomycin D experiments. RESULTS In the UCD model, cervical dilation causes an increase in EMG signal and spinal cord c-Fos expression. At the same time, the levels of TRPA1, p-NR2B, METTL14, and m6A increased in a stimulus intensity-dependent manner. Intrathecal SAH, a METTL3-METTL14 inhibitor, alleviated UCD-induced pain and reversed above indicators. Further investigation revealed that METTL14 binds to TRPA1, increasing TRPA1 mRNA stability via m6A modification. CONCLUSION METTL14 stabilizes TRPA1 through m6A modification, thereby promoting NR2B phosphorylation, culminating in acute visceral pain induced by UCD.
Collapse
Affiliation(s)
- Guangfa Xia
- Department of Breast Surgery, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China
| | - Jing Qian
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China.
| | - Fei Xiao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Lin W, Zhang S, Gu C, Zhu H, Liu Y. GLIPR2: a potential biomarker and therapeutic target unveiled - Insights from extensive pan-cancer analyses, with a spotlight on lung adenocarcinoma. Front Immunol 2024; 15:1280525. [PMID: 38476239 PMCID: PMC10929020 DOI: 10.3389/fimmu.2024.1280525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Background Glioma pathogenesis related-2 (GLIPR2), an emerging Golgi membrane protein implicated in autophagy, has received limited attention in current scholarly discourse. Methods Leveraging extensive datasets, including The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC), we conducted a comprehensive investigation into GLIPR2 expression across diverse human malignancies. Utilizing UALCAN, OncoDB, MEXPRESS and cBioPortal databases, we scrutinized GLIPR2 mutation patterns and methylation landscapes. The integration of bulk and single-cell RNA sequencing facilitated elucidation of relationships among cellular heterogeneity, immune infiltration, and GLIPR2 levels in pan-cancer. Employing ROC and KM analyses, we unveiled the diagnostic and prognostic potential of GLIPR2 across diverse cancers. Immunohistochemistry provided insights into GLIPR2 expression patterns in a multicenter cohort spanning various cancer types. In vitro functional experiments, including transwell assays, wound healing analyses, and drug sensitivity testing, were employed to delineate the tumor suppressive role of GLIPR2. Results GLIPR2 expression was significantly reduced in neoplastic tissues compared to its prevalence in healthy tissues. Copy number variations (CNV) and alterations in methylation patterns exhibited discernible correlations with GLIPR2 expression within tumor tissues. Moreover, GLIPR2 demonstrated diagnostic and prognostic implications, showing pronounced associations with the expression profiles of numerous immune checkpoint genes and the relative abundance of immune cells in the neoplastic microenvironment. This multifaceted influence was evident across various cancer types, with lung adenocarcinoma (LUAD) being particularly prominent. Notably, patients with LUAD exhibited a significant decrease in GLIPR2 expression within practical clinical settings. Elevated GLIPR2 expression correlated with improved prognostic outcomes specifically in LUAD. Following radiotherapy, LUAD cases displayed an increased presence of GLIPR2+ infiltrating cellular constituents, indicating a notable correlation with heightened sensitivity to radiation-induced therapeutic modalities. A battery of experiments validated the functional role of GLIPR2 in suppressing the malignant phenotype and enhancing treatment sensitivity. Conclusion In pan-cancer, particularly in LUAD, GLIPR2 emerges as a promising novel biomarker and tumor suppressor. Its involvement in immune cell infiltration suggests potential as an immunotherapeutic target.
Collapse
Affiliation(s)
- Wei Lin
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Siming Zhang
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Lin W, Zhou Y, Liu Y, Liu C, Lin M, Tang Y, Chen A, Wu B, Lin C. Dorsoventral hippocampus distinctly modulates visceral sensitivity and anxiety behaviors in male IBS-like rats. J Neurosci Res 2024; 102. [PMID: 38284854 DOI: 10.1002/jnr.25289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Accumulating evidences suggest dysfunctions in the hippocampus are associated with chronic pain. Nevertheless, the role of hippocampal circuitry in pain memories and emotional responses is not yet fully understood. In this study, we utilized a comprehensive approach that combined electromyography (EMG), photochemical genetic techniques, and anxiety-related behavioral paradigms to investigate the involvement of dorsal hippocampus (DH) and ventral hippocampus (VH) in visceral sensitivity and anxiety behaviors in male rats. Our results demonstrated that IBS-like rats exhibited comorbid visceral hypersensitivity and anxiety, along with the number of activated neurons in the VH was higher than that in the DH. Manipulation of glutamatergic neurons in the hippocampus was identified as a crucial mechanism underlying the mediation of both visceral sensitivity and anxiety behaviors. Specifically, optogenetic activation of the DH induced both visceral hypersensitivity and anxiety, while activation of the VH induced anxiety but did not affect visceral sensitivity. Conversely, chemogenetic inhibition of the DH reduced both visceral hypersensitivity and anxiety, whereas inhibition of the VH alleviated anxiety but did not alleviate visceral hypersensitivity in IBS-like rats. Our study highlights the important role of early life stress in inducing visceral hypersensitivity and anxiety, and further elucidates the distinct functional contributions of the DH and VH to these behavioral changes. These findings provide a theoretical basis for the diagnosis and treatment of IBS, and suggest that targeting specific hippocampal neuron subtypes may represent a promising therapeutic approach.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yifei Zhou
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuan Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Congxu Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengying Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Chen Y, Zhang Y, Lin W, Tang Y, Chen L, Gao Y, Gao G, Luo X, Chen A, Lin C. Role of magnesium-L-Threonate in alleviating skin/muscle incision and retraction induced mechanical allodynia and anxiodepressive-like behaviors in male rats. Brain Res 2023; 1817:148476. [PMID: 37406874 DOI: 10.1016/j.brainres.2023.148476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Chronic postsurgical pain (CPSP) and its emotional comorbidities poses health burden to patients who have received the surgical treatment. However, its underlying mechanism remains unclear. Emerging studies indicate that magnesium deficiency is associated with neurological diseases, and magnesium supplement confers protection under these disease conditions. In this study, we examined the role and mechanism of magnesium deficiency in the pathology of surgery-induced allodynia and negative emotion using a rat model of skin/muscle incision and retraction (SMIR) and investigated the therapeutic effects of magnesium supplementation by oral magnesium-L-Threonate (L-TAMS) in SMIR-injured rats. In the SMIR model, rats developed mechanical allodynia and anxiodepressive-like behaviors. Further, SMIR caused microglia and astrocyte activation and enhanced expression of pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) in the anterior cingulate cortex (ACC). Importantly, magnesium ion (Mg2+) levels decreased in the serum and cerebrospinal fluid (CSF) of SMIR-injured rats, which exhibited high correlation with pain and emotion behavioral phenotypes in these rats. Repeated oral administration of L-TAMS increased serum and CSF levels of Mg2+ in SMIR-injured rats. Notably, L-TAMS administration reversed SMIR-induced mechanical allodynia and anxiodepressive-like behaviors but did not affect pain and emotional behaviors in sham rats. Moreover, L-TAMS administration suppressed SMIR-caused glial activation and proinflammatory cytokine expression in the ACC but had no such effect in sham rats. Together, our study demonstrates the contributing role of magnesium deficiency in the pathology of surgery-induced chronic pain and negative emotion. Moreover, we suggest that L-TAMS might be a novel approach to treat CPSP and its emotional comorbidities.
Collapse
Affiliation(s)
- Yu Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Yimeng Zhang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Wei Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China; Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, China
| | - Ying Tang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Liang Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Ying Gao
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Guangcheng Gao
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Xin Luo
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, China.
| | - Aiqin Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China.
| | - Chun Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China; Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, China.
| |
Collapse
|