1
|
Le STT, Kristjánsson Á, MacInnes WJ. Target selection during "snapshot" foraging. Atten Percept Psychophys 2024; 86:2778-2793. [PMID: 39604757 DOI: 10.3758/s13414-024-02988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
While previous foraging studies have identified key variables that determine attentional selection, they are affected by the global statistics of the tasks. In most studies, targets are selected one at a time without replacement while distractor numbers remain constant, steadily reducing the ratios of targets to distractors with every selection. We designed a foraging task with a sequence of local "snapshots" of foraging displays, with each snapshot requiring a target selection. This enabled tighter control of local target and distractor type ratios while maintaining the flavor of a sequential, multiple-target foraging task. Observers saw only six items for each target selection during a "snapshot" containing varying numbers of two target types and two distractor types. After each selection, a new six-item array (the following snapshot) immediately appeared, centered on the locus of the last selected target. We contrasted feature-based and conjunction-based foraging and analyzed the data by the proportion of different target types in each trial. We found that target type proportion affected selection, with longer response times during conjunction foraging when the number of the alternate target types was greater than the repeated target types. In addition, the choice of target in each snapshot was influenced by the relative positions of selected targets and distractors during preceding snapshots. Importantly, this shows to what degree previous findings on foraging can be attributed to changing global statistics of the foraging array. We propose that "snapshot foraging" can increase experimental control in understanding how people choose targets during continuous attentional orienting.
Collapse
|
2
|
Makarov I, Unnthorsson R, Kristjánsson Á, Thornton IM. The effects of visual and auditory synchrony on human foraging. Atten Percept Psychophys 2024; 86:909-930. [PMID: 38253985 DOI: 10.3758/s13414-023-02840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Can synchrony in stimulation guide attention and aid perceptual performance? Here, in a series of three experiments, we tested the influence of visual and auditory synchrony on attentional selection during a novel human foraging task. Human foraging tasks are a recent extension of the classic visual search paradigm in which multiple targets must be located on a given trial, making it possible to capture a wide range of performance metrics. Experiment 1 was performed online, where the task was to forage for 10 (out of 20) vertical lines among 60 randomly oriented distractor lines that changed color between yellow and blue at random intervals. The targets either changed colors in visual synchrony or not. In another condition, a non-spatial sound additionally occurred synchronously with the color change of the targets. Experiment 2 was run in the laboratory (within-subjects) with the same design. When the targets changed color in visual synchrony, foraging times were significantly shorter than when they randomly changed colors, but there was no additional benefit for the sound synchrony, in contrast to predictions from the so-called "pip-and-pop" effect (Van der Burg et al., Journal of Experimental Psychology, 1053-1065, 2008). In Experiment 3, task difficulty was increased as participants foraged for as many 45° rotated lines as possible among lines of different orientations within 10 s, with the same synchrony conditions as in Experiments 1 and 2. Again, there was a large benefit of visual synchrony but no additional benefit for sound synchronization. Our results provide strong evidence that visual synchronization can guide attention during multiple target foraging. This likely reflects the local grouping of the synchronized targets. Importantly, there was no additional benefit for sound synchrony, even when the foraging task was quite difficult (Experiment 3).
Collapse
Affiliation(s)
- Ivan Makarov
- Faculty of Psychology, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland.
| | - Runar Unnthorsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland
| | - Árni Kristjánsson
- Faculty of Psychology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ian M Thornton
- Department of Cognitive Science Faculty of Media & Knowledge Science, University of Malta, Msida, Malta
| |
Collapse
|
3
|
A Bayesian Statistical Model Is Able to Predict Target-by-Target Selection Behaviour in a Human Foraging Task. VISION (BASEL, SWITZERLAND) 2022; 6:vision6040066. [PMID: 36412647 PMCID: PMC9680426 DOI: 10.3390/vision6040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Foraging refers to search involving multiple targets or multiple types of targets, and as a model task has a long history in animal behaviour and human cognition research. Foraging behaviour is usually operationalized using summary statistics, such as average distance covered during target collection (the path length) and the frequency of switching between target types. We recently introduced an alternative approach, which is to model each instance of target selection as random selection without replacement. Our model produces estimates of a set of foraging biases, such as a bias to select closer targets or targets of a particular category. Here we apply this model to predict individual target selection events. We add a new start position bias to the model, and generate foraging paths using the parameters estimated from individual participants' pre-existing data. The model predicts which target the participant will select next with a range of accuracy from 43% to 69% across participants (chance is 11%). The model therefore explains a substantial proportion of foraging behaviour in this paradigm. The situations where the model makes errors reveal useful information to guide future research on those aspects of foraging that we have not yet explained.
Collapse
|
4
|
Clarke ADF, Hunt AR, Hughes AE. Foraging as sampling without replacement: A Bayesian statistical model for estimating biases in target selection. PLoS Comput Biol 2022; 18:e1009813. [PMID: 35073315 PMCID: PMC8812991 DOI: 10.1371/journal.pcbi.1009813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/03/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Foraging entails finding multiple targets sequentially. In humans and other animals, a key observation has been a tendency to forage in 'runs' of the same target type. This tendency is context-sensitive, and in humans, it is strongest when the targets are difficult to distinguish from the distractors. Many important questions have yet to be addressed about this and other tendencies in human foraging, and a key limitation is a lack of precise measures of foraging behaviour. The standard measures tend to be run statistics, such as the maximum run length and the number of runs. But these measures are not only interdependent, they are also constrained by the number and distribution of targets, making it difficult to make inferences about the effects of these aspects of the environment on foraging. Moreover, run statistics are underspecified about the underlying cognitive processes determining foraging behaviour. We present an alternative approach: modelling foraging as a procedure of generative sampling without replacement, implemented in a Bayesian multilevel model. This allows us to break behaviour down into a number of biases that influence target selection, such as the proximity of targets and a bias for selecting targets in runs, in a way that is not dependent on the number of targets present. Our method thereby facilitates direct comparison of specific foraging tendencies between search environments that differ in theoretically important dimensions. We demonstrate the use of our model with simulation examples and re-analysis of existing data. We believe our model will provide deeper insights into visual foraging and provide a foundation for further modelling work in this area.
Collapse
Affiliation(s)
| | - Amelia R. Hunt
- University of Aberdeen, School of Psychology, Aberdeen, United Kingdom
| | - Anna E. Hughes
- University of Essex, Department of Psychology, Colchester, United Kingdom
| |
Collapse
|
5
|
Abstract
Traditionally, vision science and information/data visualization have interacted by using knowledge of human vision to help design effective displays. It is argued here, however, that this interaction can also go in the opposite direction: the investigation of successful visualizations can lead to the discovery of interesting new issues and phenomena in visual perception. Various studies are reviewed showing how this has been done for two areas of visualization, namely, graphical representations and interaction, which lend themselves to work on visual processing and the control of visual operations, respectively. The results of these studies have provided new insights into aspects of vision such as grouping, attentional selection and the sequencing of visual operations. More generally yet, such results support the view that the perception of visualizations can be a useful domain for exploring the nature of visual cognition, inspiring new kinds of questions as well as casting new light on the limits to which information can be conveyed visually.
Collapse
Affiliation(s)
- Ronald A Rensink
- Departments of Computer Science and Psychology, University of British Columbia, Vancouver, Canada.,
| |
Collapse
|
6
|
Thornton IM, Tagu J, Zdravković S, Kristjánsson Á. The Predation Game: Does dividing attention affect patterns of human foraging? Cogn Res Princ Implic 2021; 6:35. [PMID: 33956238 PMCID: PMC8100746 DOI: 10.1186/s41235-021-00299-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Attention is known to play an important role in shaping the behaviour of both human and animal foragers. Here, in three experiments, we built on previous interactive tasks to create an online foraging game for studying divided attention in human participants exposed to the (simulated) risk of predation. Participants used a "sheep" icon to collect items from different target categories randomly distributed across the display. Each trial also contained "wolf" objects, whose movement was inspired by classic studies of multiple object tracking. When participants needed to physically avoid the wolves, foraging patterns changed, with an increased tendency to switch between target categories and a decreased ability to prioritise high reward targets, relative to participants who could safely ignore them. However, when the wolves became dangerous by periodically changing form (briefly having big eyes) instead of by approaching the sheep, foraging patterns were unaffected. Spatial disruption caused by the need to rapidly shift position-rather the cost of reallocating attention-therefore appears to influence foraging in this context. These results thus confirm that participants can efficiently alternate between target selection and tracking moving objects, replicating earlier single-target search findings. Future studies may need to increase the perceived risk or potential costs associated with simulated danger, in order to elicit the extended run behaviour predicted by animal models of foraging, but absent in the current data.
Collapse
Affiliation(s)
- Ian M Thornton
- Department of Cognitive Science, Faculty of Media and Knowledge Sciences, University of Malta, Msida, Malta.
| | - Jérôme Tagu
- Faculty of Psychology, School of Health Sciences, University of Iceland, Oddi v. Sturlugötu, 101, Reykjavik, Iceland
- EA 4139 Laboratory of Psychology, University of Bordeaux, Bordeaux, France
| | - Sunčica Zdravković
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, Novi Sad, Serbia
- Laboratory for Experimental Psychology, University of Belgrade, Belgrade, Serbia
| | - Árni Kristjánsson
- Faculty of Psychology, School of Health Sciences, University of Iceland, Oddi v. Sturlugötu, 101, Reykjavik, Iceland
- School of Psychology, National Research University, Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
7
|
Kristjánsson Á, Draschkow D. Keeping it real: Looking beyond capacity limits in visual cognition. Atten Percept Psychophys 2021; 83:1375-1390. [PMID: 33791942 PMCID: PMC8084831 DOI: 10.3758/s13414-021-02256-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 11/23/2022]
Abstract
Research within visual cognition has made tremendous strides in uncovering the basic operating characteristics of the visual system by reducing the complexity of natural vision to artificial but well-controlled experimental tasks and stimuli. This reductionist approach has for example been used to assess the basic limitations of visual attention, visual working memory (VWM) capacity, and the fidelity of visual long-term memory (VLTM). The assessment of these limits is usually made in a pure sense, irrespective of goals, actions, and priors. While it is important to map out the bottlenecks our visual system faces, we focus here on selected examples of how such limitations can be overcome. Recent findings suggest that during more natural tasks, capacity may be higher than reductionist research suggests and that separable systems subserve different actions, such as reaching and looking, which might provide important insights about how pure attentional or memory limitations could be circumvented. We also review evidence suggesting that the closer we get to naturalistic behavior, the more we encounter implicit learning mechanisms that operate "for free" and "on the fly." These mechanisms provide a surprisingly rich visual experience, which can support capacity-limited systems. We speculate whether natural tasks may yield different estimates of the limitations of VWM, VLTM, and attention, and propose that capacity measurements should also pass the real-world test within naturalistic frameworks. Our review highlights various approaches for this and suggests that our understanding of visual cognition will benefit from incorporating the complexities of real-world cognition in experimental approaches.
Collapse
Affiliation(s)
- Árni Kristjánsson
- School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- School of Psychology, National Research University Higher School of Economics, Moscow, Russia.
| | - Dejan Draschkow
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Kristjánsson Á, Helgadóttir A, Kristjánsson T. Eating disorder symptoms and foraging for food related items. J Eat Disord 2021; 9:18. [PMID: 33568221 PMCID: PMC7877050 DOI: 10.1186/s40337-021-00373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Foraging tasks have recently been increasingly used to investigate visual attention. Visual attention can be biased when certain stimuli capture our attention, especially threatening or anxiety-provoking stimuli, but such effects have not been addressed in foraging studies. METHODS We measured potential attentional bias associated with eating disorder symptoms to food related stimuli with our previously developed iPad foraging task. Forty-four participants performed a foraging task where they were instructed to tap predesignated food related targets (healthy and unhealthy) and other non-food objects and completed four self-report questionnaires measuring symptoms of eating disorders. Participants were split into two groups based on their questionnaire scores, a symptom group and no symptom group. RESULTS The foraging results suggest that there are differences between the groups on switch costs and target selection times (intertarget times) but they were only statistically significant when extreme-group analyses (EGA) were used. There were also notable food versus non-food category effects in the foraging patterns. CONCLUSIONS The results suggest that foraging tasks of this sort can be used to assess attentional biases and we also speculate that they may eventually be used to treat them through attention bias modification. Additionally, the category effects that we see between food items and other items are highly interesting and encouraging. At the same time, task sensitivity will need to be improved. Finally, future tests of clinical samples could provide a clearer picture of the effects of eating disorder symptoms on foraging for food.
Collapse
Affiliation(s)
- Árni Kristjánsson
- Faculty of Psychology, University of Iceland, Nýi Garður, 101, Reykjavík, Iceland.
- School of Psychology, National Research University Higher School of Economics, Moscow, 101000, Russia.
| | - Auður Helgadóttir
- Faculty of Psychology, University of Iceland, Nýi Garður, 101, Reykjavík, Iceland
| | - Tómas Kristjánsson
- Faculty of Psychology, University of Iceland, Nýi Garður, 101, Reykjavík, Iceland
| |
Collapse
|