1
|
Ou Yong BM, Awuah WA, Shah MH, Sanker V, Huk JKS, Venkata SY, Patel DH, Tan JK, Khan NA, Kulasekaran A, Sarkar M, Abdul-Rahman T, Atallah O. Intracerebral haemorrhage in multiple sclerosis: assessing the impact of disease-modifying medications. Eur J Med Res 2024; 29:344. [PMID: 38918831 PMCID: PMC11197372 DOI: 10.1186/s40001-024-01945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple Sclerosis (MS) is a complex autoimmune disorder that significantly impacts the central nervous system, leading to a range of complications. While intracranial haemorrhage (ICH) is a rare but highly morbid complication, more common CNS complications include progressive multifocal leukoencephalopathy (PML) and other CNS infections. This severe form of stroke, known for its high morbidity and mortality rates, presents a critical challenge in the management of MS. The use of disease-modifying drugs (DMDs) in treating MS introduces a nuanced aspect to patient care, with certain medications like Dimethyl Fumarate and Fingolimod showing potential in reducing the risk of ICH, while others such as Alemtuzumab and Mitoxantrone are associated with an increased risk. Understanding the intricate relationship between these DMDs, the pathophysiological mechanisms of ICH, and the individualised aspects of each patient's condition is paramount. Factors such as genetic predispositions, existing comorbidities, and lifestyle choices play a crucial role in tailoring treatment approaches, emphasising the importance of a personalised, vigilant therapeutic strategy. The necessity for ongoing and detailed research cannot be overstated. It is crucial to explore the long-term effects of DMDs on ICH occurrence and prognosis in MS patients, aiming to refine clinical practices and promote patient-centric, informed therapeutic decisions. This approach ensures that the management of MS is not only comprehensive but also adaptable to the evolving understanding of the disease and its treatments.
Collapse
Affiliation(s)
| | | | | | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Thiruvananthapuram, India
| | | | | | - Diti H Patel
- Nova Southeastern University Dr. Kiran C Patel College of Allopathic Medicine, Davie, FL, USA
| | | | - Noor Ayman Khan
- DOW Medical College, DOW University of Health Sciences (DUHS), Baba-E-Urdu Road, Karachi, Pakistan
| | | | - Manali Sarkar
- MGM Medical College Navi, Mumbai, Maharashtra, India
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Fang M, Hou H, Feng B, Zhang T, Zhu X, Liu Z. The neuroprotective effect of dl-3-n-butylphthalide on the brain with experimental intracerebral hemorrhage. Eur J Pharmacol 2023; 959:176105. [PMID: 37802280 DOI: 10.1016/j.ejphar.2023.176105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, nevertheless specific treatments with conclusive clinical benefit in improving outcomes of ICH remain lacking. The present study applied dl-3-n-butylphthalide (NBP), a compound approved for the treatment of ischemic stroke and rarely studied in ICH, to an experimental animal model of ICH, aiming to evaluate the therapeutic effects of NBP on ICH and the potential mechanisms. The results showed that rats receiving NBP administration exhibited a structural and functional restoration of brain after ICH mainly manifested as alleviation of neuronal apoptosis, suppression of neuroinflammation and oxidative stress, neurovascular remodeling, and eventually improvement of neurological deficits. In addition, several protein targets of NBP were revealed, which mainly play molecular functions of ribonucleoside triphosphate phosphatase activity, pyrophosphatase activity, hydrolase activity and GTPase activity, and participate in the biological process of brain development by regulating the formation of cellular components such as spindles, polymeric cytoskeletal fibers, microtubules and synapses, through mediating pathways such as VEGF signaling pathway, Fc epsilon RI signaling pathway, ECM-receptor interaction, Fc gamma R-mediated phagocytosis, peroxisome and so on, guiding the mechanism exploration of NBP therapy to some extent. Taken together, the study added some new evidence to the application of NBP in ICH treatment.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Hongling Hou
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Bo Feng
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Tianzhu Zhang
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaomei Zhu
- Department of Pharmacy, Beidahuang Industry Group General Hospital, Heilongjiang, China
| | - Zhen Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| |
Collapse
|
3
|
Alam MR, Singh S. Neuromodulation in Parkinson's disease targeting opioid and cannabinoid receptors, understanding the role of NLRP3 pathway: a novel therapeutic approach. Inflammopharmacology 2023:10.1007/s10787-023-01259-0. [PMID: 37318694 DOI: 10.1007/s10787-023-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor and non-motor symptoms. Although levodopa is the primary medication for PD, its long-term use is associated with complications such as dyskinesia and drug resistance, necessitating novel therapeutic approaches. Recent research has highlighted the potential of targeting opioid and cannabinoid receptors as innovative strategies for PD treatment. Modulating opioid transmission, particularly through activating µ (MOR) and δ (DOR) receptors while inhibiting κ (KOR) receptors, shows promise in preventing motor complications and reducing L-DOPA-induced dyskinesia. Opioids also possess neuroprotective properties and play a role in neuroprotection and seizure control. Similar to this, endocannabinoid signalling via CB1 and CB2 receptors influences the basal ganglia and may contribute to PD pathophysiology, making it a potential therapeutic target. In addition to opioid and cannabinoid receptor targeting, the NLRP3 pathway, implicated in neuroinflammation and neurodegeneration, emerges as another potential therapeutic avenue for PD. Recent studies suggest that targeting this pathway holds promise as a therapeutic strategy for PD management. This comprehensive review focuses on neuromodulation and novel therapeutic approaches for PD, specifically highlighting the targeting of opioid and cannabinoid receptors and the NLRP3 pathway. A better understanding of these mechanisms has the potential to enhance the quality of life for PD patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Laso-García F, Casado-Fernández L, Piniella D, Gómez-de Frutos MC, Arizaga-Echebarria JK, Pérez-Mato M, Alonso-López E, Otero-Ortega L, Bravo SB, Chantada-Vázquez MDP, Avendaño-Ortiz J, López-Collazo E, Lumbreras-Herrera MI, Gámez-Pozo A, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández M, Alonso de Leciñana M. Circulating extracellular vesicles promote recovery in a preclinical model of intracerebral hemorrhage. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:247-262. [PMID: 37090418 PMCID: PMC10113711 DOI: 10.1016/j.omtn.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
Circulating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls. Comparison of the protein cargo of circulating EVs at 28 days from animals with good vs. poor recovery showed down-expression of immune system activation pathways (CO4, KLKB1, PROC, FA9, and C1QA) and of restorative processes such as axon guidance (RAC1), myelination (MBP), and synaptic vesicle trafficking (SYN1), which is in line with better tissue preservation. Up-expression of PCSK9 (neuron differentiation) in xenogenic EVs-treated animals suggests enhancement of repair pathways. In conclusion, the administration of blood-derived EVs improved recovery after ICH. These findings open a new and promising opportunity for further development of restorative therapies to improve the outcomes after an ICH.
Collapse
Affiliation(s)
- Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Laura Casado-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Dolores Piniella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Universidad Autónoma de Madrid and IdiPAZ Health Research Institute, La Paz University Hospital, Madrid, Spain
| | - Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Jone Karmele Arizaga-Echebarria
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Pérez-Mato
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - José Avendaño-Ortiz
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - Eduardo López-Collazo
- TumorImmunology Laboratory and Innate Immune Response Group, IdiPAZ Health Research Institute, Madrid, Spain
| | - María Isabel Lumbreras-Herrera
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Gutiérrez-Fernández, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area Hospital La Paz Institute for Health Research – IdiPAZ (La Paz University Hospital- Universidad Autónoma de Madrid), Madrid, Spain
- Corresponding author: María Alonso de Leciñana, Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Paseo de la Castellana, 261, 28046 Madrid, Spain.
| |
Collapse
|
5
|
Almeida OP, Singulani MP, Ford AH, Hackett ML, Etherton-Beer C, Flicker L, Hankey GJ, De Paula VJR, Penteado CT, Forlenza OV. Lithium and Stroke Recovery: A Systematic Review and Meta-Analysis of Stroke Models in Rodents and Human Data. Stroke 2022; 53:2935-2944. [PMID: 35968702 DOI: 10.1161/strokeaha.122.039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans. METHODS This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Medline, Embase, and PsycINFO for preclinical and clinical studies published between January 2000 and September 2021. A random-effects meta-analysis was conducted from observational studies. RESULTS From 1625 retrieved studies, 42 were included in the systematic review. Of those, we identified 36 rodent models of stroke using preinsult or postinsult treatment with lithium, and 6 studies were conducted in human samples, of which 4 could be meta-analyzed. The review of animal models was stratified according to the type of stroke and outcomes. Human data were subdivided into observational and intervention studies. Treatment of rodents with lithium was associated with smaller stroke volumes, decreased apoptosis, and improved poststroke function. In humans, exposure to lithium was associated with a lower risk of stroke among adults with bipolar disorder in 2 of 4 studies. Two small trials showed equivocal clinical benefits of lithium poststroke. CONCLUSIONS Animal models of stroke show consistent biological and functional evidence of benefits associated with lithium treatment, whereas human evidence remains sparse and inconclusive. The potential role of lithium in poststroke recovery is yet to be adequately tested in humans.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Monique P Singulani
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Andrew H Ford
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Maree L Hackett
- The George Institute for Global Health, the University of New South Wales, Sydney, Australia (M.L.H.)
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Vanessa J R De Paula
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Camila T Penteado
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Orestes V Forlenza
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| |
Collapse
|
6
|
Crilly S, McMahon E, Kasher PR. Zebrafish for modeling stroke and their applicability for drug discovery and development. Expert Opin Drug Discov 2022; 17:559-568. [PMID: 35587689 DOI: 10.1080/17460441.2022.2072828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The global health burden of stroke is significant and few therapeutic treatment options currently exist for patients. Pre-clinical research relies heavily on rodent stroke models but the limitations associated with using these systems alone has meant translation of drug compounds to the clinic has not been greatly successful to date. Zebrafish disease modeling offers a potentially complementary platform for pre-clinical compound screening to aid the drug discovery process for translational stroke research. AREAS COVERED In this review, the authors introduce stroke and describe the issues associated with the current pre-clinical drug development pipeline and the advantages that zebrafish disease modeling can offer. Existing zebrafish models of ischemic and hemorrhagic stroke are reviewed. Examples of how zebrafish models have been utilized for drug discovery in other disease disciplines are also discussed. EXPERT OPINION Zebrafish disease modeling holds the capacity and potential to significantly enhance the stroke drug development pipeline. However, for this system to be more widely accepted and incorporated into translational stroke research, continued improvement of the existing zebrafish stroke models, as well as focussed collaboration between zebrafish and stroke researchers, is essential.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Emily McMahon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Javaid MA, Selim M, Ortega-Gutierrez S, Lattanzi S, Zargar S, Alaouieh DA, Hong E, Divani AA. Potential application of intranasal insulin delivery for treatment of intracerebral hemorrhage: A review of the literature. J Stroke Cerebrovasc Dis 2022; 31:106489. [PMID: 35489182 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 12/01/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke associated with high morbidity and mortality that is considered a medical emergency, mainly managed with adequate blood pressure control and creating a favorable hemostatic condition. However, to date, none of the randomized clinical trials have led to an effective treatment for ICH. It is vital to better understand the mechanisms underlying brain injury to effectively decrease ICH-associated morbidity and mortality. It is well known that initial hematoma formation and its expansion have detrimental consequences. The literature has recently focused on other pathological processes, including oxidative stress, neuroinflammation, blood-brain barrier disruption, edema formation, and neurotoxicity, that constitute secondary brain injury. Since conventional management has failed to improve clinical outcomes significantly, various neuroprotective therapies are tested in preclinical and clinical settings. Unlike intravenous administration, intranasal insulin can reach a higher concentration in the cerebrospinal fluid without causing systemic side effects. Intranasal insulin delivery has been introduced as a novel neuroprotective agent for certain neurological diseases, including ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury. Since there is an overlap of mechanisms causing neuroinflammation in these neurological diseases and ICH, we believe that preclinical studies testing the role of intranasal insulin therapy in ICH are warranted.
Collapse
Affiliation(s)
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Shima Zargar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Crilly S, Parry-Jones A, Wang X, Selley JN, Cook J, Tapia VS, Anderson CS, Allan SM, Kasher PR. Zebrafish drug screening identifies candidate therapies for neuroprotection after spontaneous intracerebral haemorrhage. Dis Model Mech 2022; 15:274873. [PMID: 35098999 PMCID: PMC8990924 DOI: 10.1242/dmm.049227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the global health burden, treatment of spontaneous intracerebral haemorrhage (ICH) is largely supportive and translation of specific medical therapies has not been successful. Zebrafish larvae offer a unique platform for drug screening to rapidly identify neuroprotective compounds following ICH. We applied the Spectrum Library compounds to zebrafish larvae acutely after ICH to screen for decreased brain cell death and identified 150 successful drugs. Candidates were then evaluated for possible indications with other cardiovascular diseases. Six compounds were identified including two angiotensin converting enzyme inhibitors (ACE-I). Ramipril and quinapril were further assessed to confirm a significant 55% reduction in brain cell death. Proteomic analysis revealed potential mechanisms of neuroprotection. Using the INTERACT2 clinical trial dataset, we demonstrate a significant reduction in the adjusted odds of an unfavourable shift in the modified Rankin Scale at 90 days for patients receiving an ACE-I after ICH (vs. no ACE-I; odds ratio 0.80; 95% confidence interval 0.68-0.95; P=0.009). The zebrafish larval model of spontaneous ICH can be used as a reliable drug screening platform, and has identified therapeutics which may offer neuroprotection.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Adrian Parry-Jones
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Manchester Centre for Clinical Neurosciences, Salford Royal, NHS Foundation Trust, Manchester Academic Health Science Centre; Stott Lane, Salford, M6 8HD, UK
| | - Xia Wang
- The George Institute for Global Health; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Julian N Selley
- The Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, UK
| | - James Cook
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Victor S Tapia
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Craig S Anderson
- The George Institute for Global Health; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Oxford Road, Manchester, M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, UK
| |
Collapse
|